Once you've trapped antihydrogen what do you do? You measure it!
That's just what we've done. Published in Nature, we report the first resonant quantum transitions in antihydrogen atoms. We've used microwave radiation to change the internal state of the atom, from one which can be kept in our trap, to one that is kicked out. This process depends on the frequency of the microwave radiation and the magnetic field in the trap, so by changing both of these, we demonstrated that we had enough control and sensitivity to sucessfully carry out the experiment. This is by no means easy, as antihydrogen is not found in nature, but must be prepared in our apparatus from antiprotons made in the Antiproton Decelerator, and positrons from a radioactive source, Even more, it must have low enough energy to remain trapped in the magnetic fields making up our trap. Here's an animation describing how we do our measurement.
Eventually, we will use this technique to compare the structure of antihydrogen and hydrogen atoms, to search for difference between matter and antimatter, but In this first experiment, we do not yet have enough precision to test these fundamental symmetries. This is important, as the Universe has shown a preference for matter over antimatter as it has evolved, but so far, no measurements can explain why this came about. If matter and antimatter were truely identical, the Universe as we know it could not have come about. The next step at ALPHA is to construct an apparatus that will allow us to make these more precise measurements, using both microwave radiation, and laser light.
We've been waiting a long time for this result, so we're really happy – the CERN People documentary has been following us through the process – check out the first video here.
Nature 483, 439–443 (2012)