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Abstract
We develop a new algorithm to estimate the temperature of a nonneutral plasma in a
Penning-Malmberg trap. The algorithm analyzes data obtained by slowly lowering a
voltage that confines one end of the plasma and collecting escaping charges, and is a
maximum likelihood estimator based on a physically-motivated model of the escape
protocol presented in (Beck in Measurement of the magnetic and temperature
dependence of the electron-electron anisotropic temperature relaxation rate. PhD
thesis, 1990). Significantly, our algorithm may be used on single-count data, allowing
for improved fits with low numbers of escaping electrons. This is important for
low-temperature plasmas such as those used in antihydrogen trapping. We perform a
Monte Carlo simulation of our algorithm, and assess its robustness to intrinsic shot
noise and external noise. The assumptions in this paper allow for a lower bound for
measurable plasma temperatures of approximately 3K for plasmas of length 1 cm,
with approximately 100 particle counts needed for an accuracy of ±10%.

Keywords: Nonneutral plasma; Penning-Malmberg trap; Temperature diagnostic;
Single-count data; Measurable temperature lower bound

1 Introduction
Nonneutral plasmas in Penning-Malmberg traps [2] are confined radially by a strong axial
magnetic field and are confined and manipulated longitudinally (along the magnetic field
axis) by controlling electrode voltages on cylindrical segments of the trap, as illustrated
in Fig. 1. Over the decades, nonneutral plasmas, with confinement properties that ben-
efit from their (ideally) azimuthal symmetry [3, 4] have found numerous applications in
fundamental and applied physics [5–8].

Critical to applications such as antihydrogen formation [6] is the realization of low tem-
perature nonneutral plasmas. Due to noise sources from electrodes and radiation that may
propagate down the vacuum chamber, realizing low temperatures has required exper-
imental resourcefulness [6, 7]. However, constantly improving experimental techniques
have succeeded [7] in creating plasmas with lower temperatures, approaching that of the
electrodes [9–11]. With these improved experimental techniques, it is crucial to be able to
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Figure 1 Schematic of the Penning-Malmberg trap apparatus. The cylindrical nonneutral plasma is confined
radially by a magnetic field B and axially by barrier electrodes with a fixed voltage Vfixed and a variable voltage
Vvar(t). In the temperature diagnostic, Vvar(t) is lowered and individual charges with sufficiently high axial
kinetic energy escape and are detected and logged by a silicon photomultiplier (not shown)

(1) robustly measure the plasma temperature, and (2) quantify the uncertainty underlying
such a measurement.

The most common experimental technique used to measure the plasma temperature
is an evaporative protocol, first established by Hyatt, et al. [12] and further developed by
Beck [1] and Eggleston, et al. [13]. In the protocol, one of the axially-confining electrode
voltages Vvar(t) is slowly reduced (see Fig. 1), allowing for the most energetic particles to
escape. Particles escape times {ti} are recorded by a detector and the plasma temperature
is then inferred from the barrier electrode voltage history.

The particle escape rate, assuming a Boltzmann distribution and restricting to times be-
fore enough particles escape and modify the self-potential of the plasma, matches closely
with an exponential |dNesc/dVb| ∝ exp(–qVb/kBT), which holds for Vb � kBT/q. Here, Vb

is the barrier voltage experienced by the plasma that is induced by the barrier electrode
voltage Vvar(t), q is the particle charge, kB is Boltzmann’s constant, and T is the plasma
temperature. Eventually, enough plasma particles escape and the plasma self-potential
changes, causing the escape rate to decrease and deviate from an exponential dependence
on the voltage Vb. Henceforth, we will refer to the former regime as the linear regime
(as on a log plot it is a straight line), the latter as the saturated regime, and the transition
between the two the bend-over regime (see Fig. 2).

The standard method to infer T fits a straight line fit on the log plot, thus, only using
data from the linear regime. This corresponds, for typical parameters, to the escape of only
∼5% of a Debye cylinder of plasma (a cylinder oriented along the trap magnetic field with
a radius equal to the plasma’s Debye length). For low temperature plasmas with T < 5 K,
this linear regime contains fewer than 50 particles, making for an intrinsically noisy fit.
Moreover, the implementation of the linear-fit algorithm is complicated by the ambiguity
of where the linear regime of the data ends, i.e., the point after which data should not
be used in the fit, as well as by ambiguity in where the data begins, i.e., the point after
which the data sufficiently exceeds the noise floor. Though there has been work trying to
algorithmically detect these cutoff points in the escape data [14], often times the cutoffs
are manually decided, which introduces human error.

In order to incorporate data from the bend-over and saturated regimes, however, one
must consider a model of the plasma and the protocol that includes these regimes. In
earlier work by Beck [1], a continuum model of the process was developed allowing for
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Figure 2 (a) Cartoon schematic of the parallel temperature diagnostic protocol, from left to right. A
cylindrical plasma (orange cylinder) is confined axially by voltage barriers (black curve below). One of the end
barriers is lowered, and particles with high enough axial energy escape. Due to the self-potential, particles
near the center are more likely to escape first. The escaped particles are detected and logged. (b) The escape
rate |dNesc

θ /dVb| from the Beck model [solving Eqs. (9)–(13)] for a plasma with parameters
θ = (T = 26.6K,n0 = 108 cm–3,Rp = 1.0mm,ℓp = 1.0 cm). Vertical lines represents times when a given fraction
of a Debye cylinder has escaped. Initially the particles escape exponentially with reduced barrier voltage.
However, as a more particles escape (from the vertical red line onward), the escape rate begins to saturate
(see inset figure in (b)). (c) Effective barrier voltage (barrier voltage minus self-potential) and (d) local number
density as a function of radius, at the corresponding moments of the protocol. The local barrier voltage is
lower near the center of the plasma. Correspondingly, the particle density is lower near the center of the
plasma, as more particles will have escaped from smaller r

the calculation of a particle escape curve by solving a series of self-consistent ordinary
differential equations (ODE) that describe the plasma at various moments of the proto-
col.

In this paper, we implement a temperature-fitting algorithm that adapts Beck’s model
to single electron counts. Given binned escape data, our algorithm performs a maximum
likelihood fit of plasma parameters, assuming that electron escapes follow an inhomoge-
neous Poisson process with escape rates determined by Beck’s model. We quantify the
robustness of the algorithm to intrinsic shot noise by running it on Monte Carlo simula-
tion data. We find that for an estimator error of 10%, around 100 particles are needed in
combined linear and bend-over regimes; this corresponds to about a quarter of a Debye
cylinder of plasma. From this, we infer a lower bound for measurable plasma temperature
of around 3 K for a plasma of length 1 cm, scaling inversely proportional to plasma length.
This bound is about five times lower than what may be resolved using the straight-line
fitter. Our temperature measurement method is shown to be robust to varying plasma pa-
rameters and a specific model for external noise. Other effects such as the change in the
longitudinal potential and plasma length that occurs as ever more particles escape are not
included in this analysis. Our methodology allows for their inclusion, although practical is-
sues related to balancing the complexity of the numerical scheme and the absolute and/or
relative accuracy of the measurements would need to be addressed. We note that the tem-
peratures resolvable by our algorithm are significantly smaller than what is achieved in
experiments.
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Our work extends results obtained earlier [9, 14, 15], where silicon photomultiplier
(SiPM) data which resolved single particle escape times was analyzed with a Maximum
Likelihood Estimator (MLE) fitter using only the standard “straight line” regime.

The rest of this paper is as follows: In Sect. 2, we briefly review the temperature diagnos-
tic protocol. In Sect. 3, we present Beck’s model and our MLE fit for the temperature, and
we compare our results to those obtained from a straight line fit. In Sect. 4, we describe
the generation of Monte Carlo simulation data used to test the fitter, and in Sect. 5, we
estimate using simulations the lowest possible measurable plasma temperature and the
robustness of the fitter algorithm. In Sect. 6, we discuss our results and conclusions.

2 Dynamic evaporative protocol
In the experimental protocol, the voltage Vvar(t) of one of the axially confining barrier
electrodes is slowly lowered, inducing a barrier voltage Vb (as measured at the axial center
of the plasma z = 0). For a given barrier voltage Vb, particles with energy

E =
mv2

‖
2

+ qφ(r, θ ) > qVb (1)

can cross the voltage barrier and escape. Here, m is the particle’s mass, v‖ is its velocity in
the axial direction, and φ is the electrostatic self-potential satisfying Poisson’s equation

∇2φ(x) = –
qn(x)

ε0
, (2)

where n(x) is the number density of plasma particles, and ε0 is the vacuum permittivity.
The boundary condition at the grounded wall at radius Rw is

φ(r = Rw) = 0. (3)

Particles satisfying the inequality in Eq. (1) escape the plasma and are detected with a
collector.

The diagnostic works in an intermediate timescale, wherein the (scaled) voltage reduc-
tion rate νprotocol = (kBT/q)–1|dVb/dt| is faster than the electron collision frequency νee and
slower than then axial bounce frequency ωz :

νee � νprotocol � ωz. (4)

In this case (i) the plasma does not rethermalize (i.e., does not repopulate higher-energy
regions from which particles have already escaped) and (ii) a particle that has escaped
and been detected at time tesc can be assumed to have an energy well-approximated by
Eesc = qVb(tesc) [13].

Information about the distribution of axial energies (and, thus, the plasma temperature)
is encoded in the escape times {ti} and the corresponding voltages {Vb(ti)}. However, this
relationship is complex because the potential energy term qφ in Eq. (1) cannot be ignored.
First, for most plasmas the self-potential is significantly higher than the thermal energy
scale (φ � kBT ), varying on the order of the thermal voltage in the length scale specified
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by the Debye length:

λD :=

√
kBTε0

n0q2 (5)

(here n0 is the initial plasma density at the radial center); and second, the self-potential
is highest in the center axis, so that particles near the radial center escape earlier, thus
altering the density profile of the plasma and thereby changing φ.

Figure 2(a) gives a schematic of the experimental protocol: as the barrier voltage Vb(t)
is lowered, particles begin escaping from the center of the plasma where the self-potential
is highest. These particles are detected by a collector, and the escape rate (from Beck’s
continuum-limit model discussed in the following section) is displayed in Fig. 2(b) in a log
plot. For short times, the particle escape rate is roughly exponentially (log |dNesc/dVb| ≈
q/kBT ); as more particles leave the plasma, the self-potential is modified and the escape
rate saturates. This occurs roughly after 5% of a Debye cylinder, Ncyl = n0πλ2ℓp, escapes,
and makes inferring the temperature from data using the escape voltages data {Vi = Vb(ti)}
of particles in the bend-over and saturated regimes challenging. In order to infer a tem-
perature estimate and error from the data, we combine Beck’s plasma model with our
maximum likelihood algorithm.

3 Fitting algorithm
3.1 Beck’s model
Here we briefly review Beck’s continuum-limit model of the dynamic evaporative protocol
[1]. We assume that the plasma is initially a cylinder of radius Rp, length ℓp, and uniform
number density n0, with ℓp � Rp � 5λD. The plasma is thus determined by four parame-
ters:

θ = (T , n0, Rp,ℓp). (6)

The initial total number of particles is then given by

N0 = n0πR2
pℓp, (7)

and the number of particles in a Debye cylinder is

Ncyl = n0πλ2
Dℓp = 150.34 T (K) × ℓp (cm). (8)

Note that Ncyl depends solely on the temperature T and plasma length ℓp. Ncyl will be
shown to be relevant for quantifying the robustness of the fitter to shot noise, as the num-
ber of particles in the linear and bend-over regimes is directly proportional to Ncyl.

In the continuum limit, a deterministic escape curve for the cumulative number of es-
caped particles Nesc

θ (Vb) as a function of barrier voltage Vb may be constructed by solving a
set of coupled Poisson-Boltzmann-like equations relating the number density of remain-
ing (i.e., non-escaped) plasma nθ (x; Vb) and the self-potential φθ (x; Vb). Because of the
azimuthal symmetry of the plasma and that ℓp � Rp, only the radial dependence of nθ
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and φθ is relevant. Thus, Poisson’s equation becomes a 2nd-order ODE in r:

1
r

d
dr

(
r

dφθ (r; Vb)

dr

)
= –

qnθ (r; Vb)

ε0
, (9)

with the boundary conditions

dφθ (r = 0)

dr
= 0 and φθ (r = Rw) = 0 (10)

determined by azimuthal symmetry and grounded trap walls, respectively.
We also have from Eq. (1) and the assumption of a Maxwell-Boltzmann distribution a

nonlinear Vb-dependent relationship between particle density and self-potential energy

nθ (r; Vb) =

⎧⎪⎪⎨
⎪⎪⎩

n0 erf

√
q[Vb – φθ (r; Vb)]

kBT
for r < Rp

0 otherwise.
(11)

Here, the error function erf gives the fraction of the initial particles that do not satisfy
Eq. (1) and thus remain in the plasma.

Given a solution to Eqs. (9)–(11) for a given Vb, the total number of remaining particles
is

Nθ (Vb) = 2πℓp

∫ Rp

0
nθ (r; Vb) r dr, (12)

and the number of escaped particles is then given by

Nesc
θ (Vb) = N0 – Nθ (Vb). (13)

Equations (9)–(11) may be numerically solved through leapfrog integration with a shoot-
ing method for mixed boundary conditions, and we provide details of our implementation
in Appendix A. Further details and justifications of the model are contained in Beck’s the-
sis [1].

Figure 2(b) shows the resulting escape rate curve |dNesc
θ (Vb)/dVb| from the Beck model

for typical plasma parameters θ = (T = 26.6 K, n0 = 108 cm–3, Rp = 1.0 mm,ℓp = 1.0 cm).
The vertical lines in Fig. 2(b) correspond to the escape of different fractions of a Debye
cylinder of plasma having escaped. Throughout a wide range of parameters, the linear
regime cutoff roughly corresponds to Nesc

θ (Vb) = 0.05Ncyl. Figures 2(c) and 2(d) plot the
solutions for the local barrier height q[Vb –φθ (r; Vb)]/kBT (the argument in the error func-
tion in Eq. (11)), and the normalized density nθ (r; Vb)/n0 at values of Vb corresponding to
the vertical lines in Fig. 2.(b).

Varying the temperature changes both the slope of the linear regime of the curve (a
lower temperature corresponds to a steeper slope) and the number of particles in Ncyl in
Eq. (8). Both of these effects affect the difficulty in resolving an accurate fit. On the other
hand, varying the plasma length ℓp affects only the number of particles in Ncyl, with longer
plasmas having a greater number of particles in a Debye cylinder. Generally speaking,
the parameters n0 and Rp do not affect the shape of the curve very much as long as the
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ratio between plasma radius and Debye length is much greater than one (xp = Rp/λD � 1),
which is the case for typical plasma parameters of interest here (where xp ∼ 100); varying
n0 and Rp with fixed T , Ncyl offsets the curve horizontally, changing the numerical ranges
of Vb that correspond to the linear regime and the bend-over regime.

3.2 Maximum likelihood estimation of plasma parameters
The idea of exploiting a MLE for the temperature analysis of the temperature diagnostic
was first developed by Evans [14] in a study of single-particle-resolution SiPM data [9, 15].

In experiments, escape voltages {Vb(ti) |particle escape at ti} are obtained as binned
data D = (N ,B), with Nk ∈ N counts observed within Vk , Vk+1 ∈ B barrier voltage bin
limits (i.e., Vk > Vb > Vk+1) for each bin number k = 1, 2, . . . , K . (Here, we have assumed
the convention Vk > Vk+1, as barrier voltages are lower further along the protocol.) Under
the assumption that discrete particle arrivals follow a non-homogeneous Poisson process
with the expected cumulative escapes equal to Nesc

θ (Vb), the likelihood of observing binned
data D for plasma parameters θ is

L(θ ;D) =
∏

k

e–μk (θ) μk(θ )Nk

Nk !
, (14)

where μk(θ ) is the expected number of counts occurring between Vb = Vk and Vb = Vk+1,
given by their difference in the cumulative escape curve

μk(θ ) = Nesc
θ (Vk+1) – Nesc

θ (Vk). (15)

The MLE for the plasma parameters is the argmax of the likelihood Eq. (14); equivalently,
it is the argmin of the negative log likelihood

θ̂ = argmin
θ

(– log L(θ ;D)) = argmin
θ

∑
k

(
μk(θ ) – Nk logμk(θ ) + log Nk !

)
. (16)

In order to evaluate the argument of Eq. (16) for a particular θ , the escape curve must be
evaluated at each of the voltage bin limits Vk ∈ B to obtain the expected counts in Eq. (15).
This requires solving Eqs. (9)–(13) for each bin limit barrier voltage Vb = Vk . The negative
log likelihood function is run through a minimization algorithm—in our implementation
we use the Nelder-Mead algorithm [16]—to obtain the fit θ̂ .

Though Beck’s model requires four input parameters θ , in practice the plasma length ℓp

and total charge Q = qN0 are easily experimentally accessible quantities, and their knowl-
edge may be used to reduce the dimension of parameter space Eq. (6) to two, through the
equality constraints

θ ∈ {(T , n0, Rp,ℓp) | ℓp = ℓtrue
p , n0πR2

pℓp = N true
0 }. (17)

This reduction of dimensionality aids in the numerical convergence of the temperature
fitter, as occasionally we have observed a parameter redundancy (i.e., for some Monte
Carlo data D there were different parameters in some set θ ∈ 
redundant that returned the
same likelihood L(θ ;D) (see Appendix C)). Fortunately, in these cases of parameter redun-
dancy, the estimated temperature parameter T̂ varied by approximately ∼ 2%. This does
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not significantly degrade the accuracy of the estimated temperature, and is easily avoided
through introducing the above constraints using known values of the plasma length and
particle number.

In what follows, we assume that the initial values of the length ℓp and total charge Q are
known precisely. A more complex model, not pursued here, could include errors in these
quantities by assuming measurement priors. Furthermore, ℓp is assumed to be constant
with time. This is true only so long as few particles have escaped and {Vb(ti)} has not
changed significantly.

3.3 Computational runtime
Our algorithm took at maximum of ∼10 seconds to converge on a personal laptop com-
puter (2015 MacBook with a dual-core 2.7 GHz CPU) on single-binned counts for Ndata =
500 (i.e., 1000 total bin limits) independent of plasma temperature and added external
noise, and it would be even faster when run on modern computing hardware. We believe
that the runtime of our algorithm should not pose an issue in a live experimental pipeline.

3.4 Comparison with a straight line fit
In practice a “straight line fitter” is commonly used to determine the parameters temper-
ature T and rate amplitude A. The fitter is constructed based on the observation that the
escape energy distribution near the beginning of the protocol may be approximated with
a Boltzmann distribution: Nesc(Vb) ≈ A exp(–qVb/kBT).

As developed in Ref. [14], the “straight line fitter” is a maximum likelihood estimator for
parameters (T , A) that minimizes Eq. (16), but with expected counts given by

μsl
k (A, T) = A exp

(
–

qVk

kBT

)[
exp

(
q�Vk

kBT

)
– 1

]
(18)

where �Vk = Vk – Vk+1 is the bin width. In the case that all bins have the same bin width
�V , this gives a linear relationship between the log expected counts and barrier voltage
(logμ(Vb) = –(q/kBT)Vb + const), with the slope given by the inverse temperature.

The approximation is surprisingly good, in particular in the high-temperature limit [1,
12, 13], and its justification can be found in [1]. However, the straight-line assumption is
limited to the region where the curve is linear, which we have found to include only the
first 0.05 Ncyl of escaping plasma. Escape data that could provide additional temperature
information is thereby discarded, leading to an unnecessarily greater uncertainty in the
temperature estimate. Furthermore, it may be difficult to decide where the linear regime
ends, i.e., where to cutoff the data to be used in the straight line fitter. Though work has
been done to attempt to automatically determine this cutoff [14], it is often determined
manually, introducing human error.

An advantage of our algorithm is that because the escape curves from Beck’s model cap-
ture the linear, bend-over, and saturated regimes, an appropriate region-of-interest (ROI)
of data (e.g., including only linear and bend-over regimes before any diocotron instabil-
ities {Vk |Nesc(Vk) < 0.25 Ncyl}) may be deduced through an iterative procedure—at each
subsequent iteration, the fit is made only with data of an appropriate ROI consistent with
the previous iteration’s fit (e.g., {Vk |Nesc

θ (Vk) < 0.25 N̂cyl for θ = θ̂prev})—so that the even-
tual best fit is self-consistently made only using an appropriate ROI of data. We have not
pursued this iterative ROI algorithm in this study, but its implementation is in principle
straightforward.
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4 Numerical modeling
In order to quantify the performance of our maximum likelihood fitting algorithm, we
compare the statistics of the MLE estimated parameters θ̂ for Monte Carlo simulation
particle escape data to their ground truth values θ true used in generating the Monte Carlo
data.

4.1 Monte Carlo simulations
The Monte Carlo simulation is consistent with the Beck Model pre-continuum limit. In
brief, for parameters θ , particles were randomly initialized with a radial position r drawn
with probability p(r) ∝ r with r ∈ (0, Rp); and each particle’s velocity v was drawn from a
Maxwellian with temperature T with probability p(v) ∝ exp(–mv2/2kBT).

We make a key assumption that the plasma always maintains a azimuthally symmetric
density. This is critical for computational tractability. In reality, particles are discrete when
they hit the diagnostic. The model of the plasma assumes that in the calculation of the
space-charge potential each charge can be smeared onto a cylindrical shell of uniform
charge. The radial self-potential φ(r) is then calculated by solving Poisson’s equation with
φ(Rw) = 0 to find the total energy of each particle Ei = mv2

i /2 + qφ(ri).
After the generation of the initial plasma, the particle i with the highest total energy

is removed, with its escape voltage Vi = Ei/q recorded. The self-potential energy φ(ri) is
then recalculated for each remaining particle, and the total energy Ei updated. This is
repeated until all particles escape to produce the voltages {Vi} for a single plasma and
protocol instance (see Fig. 3). We provide more details of our Monte Carlo simulations in
the Appendix B.

Examples of simulation data and best-fit curves are plotted in Fig. 3(a)-(b) for two plasma
with different temperatures T = 266 K, and T = 2.66 K, as well as the MLE escape curve fit
from Beck’s model. A few notable points are that for the lower temperature plasma (3(b)),
there is a significantly smaller range in the barrier voltages for the particle escapes, as well
as fewer total particles in the linear regime (to the left of the orange line). Fewer particles
creates a noisier fit, as seen in 3(b). As found by Eggleston [13], the straight line region
corresponds to only around one decade of usable escape data for temperatures less than
100 Kelvin.

After parameters are estimated for each sample, the relative bias and the relative stan-
dard error (i.e., square root of estimator variance) of the temperature estimator are given
by

b =
〈T̂〉 – T

T
and ε =

√
〈T̂2〉 – 〈T̂〉2

T
, (19)

where the brackets denote the average over the ensemble samples 〈f (T̂)〉 := S–1 ∑S
s=1 f (T̂s).

In our numerical study, we use S = 1000 for each separate set of plasma parameters.

5 Simulation results
5.1 Minimum temperature limit
For our baseline simulations, we consider plasmas with non-temperature parameters set
to typically observed values of n0 = 108 cm–3, Rp = 1.0 mm, ℓp = 1.0 cm; and varying tem-
peratures T between 0.266 K and 13.3 K, corresponding to the number of particles within
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Figure 3 Binned simulation data (blue histogram) and the computed fit (dashed black line) for plasmas with
parameters (a) θ = (T = 266K,n0 = 108 cm–3,Rp = 1.0mm,ℓp = 1.0 cm) and (b) same parameters as in (a)
except the temperature is now T = 2.66K. For ease of visualization, histogram bins contain multiple counts.
Fits were made using single-count resolution histograms and the first Ndata = 0.25 Ncyl escaping particles (100
and 10000 particles, respectively), i.e., using bins to the left of the dashed vertical orange line. Beyond this
regime, diocotron instabilities may cause changes to the distribution function not captured by the model and
lead to chaotic particle escapes. The best fit temperature parameters are T̂ = 266.42K and T̂ = 2.67K
respectively

one Debye cylinder Ncyl to vary between 40 and 2000. Data is binned with single-particle
resolution, i.e., each voltage bin has either zero or a single count.

In practice, as more particles escape, the chance of observing diocotron instabilities in-
creases, limiting the amount of escape data that are actually usable. Because it is exper-
imentally difficult to determine when the diocotron instability sets in, to be conserva-
tive we have chosen to limit our fitter to using only the first Ndata = 0.25 Ncyl escapes (i.e.,
{V (s)

i | i ≤ 0.25Ncyl}). This corresponds to the linear regime and, in addition, some of the
bend-over regime (cf., to the left of the orange line Fig. 2(b)).

The error for these baseline simulations is depicted in the black bold line in Fig. 4(b).
The error as a function of number of particles is slightly higher than 1/

√
Ndata, the latter

plotted in a black dashed line as a reference. A main result of this section is that to obtain
an error of ε ≤ 10%, we need a plasma that yields slightly more than Ndata = 100 counts
within a quarter Debye cylinder. This corresponds to Tℓp = 3 K–cm. In other words, for a
plasma with ℓp = 1 cm, a temperature of T = 3 K is the lowest we can measure if we desire
a 10% accuracy of temperature fit.

We find a slight negative bias b for small Tℓp; the bias magnitude is eclipsed by the
standard error of the estimator (e.g., at Tℓp = 3 K–cm the error ε = 10% the relative bias
is around 2%).
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Figure 4 Numerically obtained relative bias (a) and relative standard error (b) of our estimator for different
plasma parameters. Plasma length is set to ℓp = 1 cm, temperature T is specified by the horizontal axis (and
subsequently the number of used particles Ndata = 0.25Ncyl ∝ ℓpT ), and different curves are for varying Rp
and n0 as specified in the legend. There are no significant differences in the quantitative behavior of our
temperature diagnostic across data sets of plasmas with differing radii and densities. The transparent curved
black line in the right plot is a reference ε = 1/

√
Ndata . The empirical fitting errors are just slightly higher than

the black line. An error of 10% corresponds to a T × ℓp product of around 3K–cm

5.2 Robustness to variations in plasma density and radius
We simulated ensembles of plasmas with differing values of n0 and Rp. The results are
shown in Fig. 4. As explained in the paragraph before Sect. 3.2, differing values of n0 and Rp

mostly change the value of Vb when escapes begin. We do not see significant quantitative
differences in the shape of the error curves, as seen in Fig. 4, illustrating the robustness of
our fitting algorithm to these variations of n0 and Rp.

5.3 Finite bin width
Given continuous hit data generated from Monte Carlo simulations {V (ti), }, the his-
togram bin size �V used in data binning is a hyperparameter (though in practice, it is
limited by the product of the temporal resolution of the detector �t times the voltage ramp
speed limited by Eq. (4), i.e., �V � |dVb/dt|�t). A larger value of �V decreases compu-
tation time (i.e., the number of times Nesc

θ (Vb) needs to be evaluated per iteration), but
introduces a binning error to the fit. We find numerical convergence for �V ≤ 20 δVmin

where δVmin = (q/2πℓpε0) ln(Rw/Rp) is the minimum difference in escape voltages be-
tween adjacent escapes in our Monte Carlo model. We observe a deviation of 1.1% in the
root mean square when using the histogram bin size �V = 20 δVmin, compared to using
�V = 0.1 δVmin across the same population.

In principle, the histogram bin size hyperparameter �V may be varied to minimize a
finite bin width error metric (e.g., as studied in [17]) which may also take into account the
algorithmic runtime (see Sect. 3.3). We leave this implementation for a future study.

5.4 Inclusion of data beyond the linear regime
Here, we vary the data in the fitter by considering the linear regime Ndata = 0.05 Ncyl, and
the saturated regime Ndata = 1.00 Ncyl (see Fig. 2(b)). Figure 5 shows that using only the
linear regime data (yellow curves) provides poorer fits (an error of 10% is reached at
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Figure 5 Numerically obtained relative bias (a) and relative standard error (b) for our temperature estimator
using a different amount of Ndata in the fitter (cf., Fig. 2.(b)). Red represents the linear regime (5% of a Debye
cylinder), orange includes some data in the bend-over regime (25% of a Debye cylinder, the same curves are
illustrated as the black-dotted curves for (n0 = 108 cm–3,Rp = 1 mm) in Fig. 4), and yellow includes a full
Debye cylinder of simulated escape data. Solid lines on right plot are ε = 1/

√
Ndata , as a reference. The linear

regime matches closely to the theoretical expectation of (1/
√
Ndata) dependence, while inclusion of a larger

fraction of the plasma, e.g., a full Debye cylinder, does not scale as favorably, as seen by the yellow simulation
results, which lie above the ε = 1/

√
Ndata solid yellow line

Tℓp ≈ 13 K–cm), while using a full Debye cylinder of plasma for the fit provides for a more
accurate fit (an error of 10% is reached at Tℓp ≈ 1.5 K–cm). Plotted as well are 1/

√
Ndata

curves, the theoretical expectation for fitting an exponential escape curve to exponential
escape data. We see that the Ndata = 0.05 Ncyl case matches nearly exactly with its theo-
retical curve (except for the uppermost data-points, which have Ndata = 2 and Ndata = 5
particles respectively, trials are likely over-fit), while for Ndata = 1.00 Ncyl the scaling is not
as favorable. This may be due to the fact that beyond the linear regime, each additional
particle used in the temperature diagnostic contributes to a smaller reduction of error
than would have been the case if the escape rate did not saturate and continued to be
exponential.

The implementation of the temperature diagnostic using data beyond the linear regime
is desirable and can obtain a reduced error in the temperature estimate. Other effects
beyond the scope of this analysis, such as diocotron instabilities, may limit performance
as more particles are extracted from the plasma.

5.5 External noise
We model the effect of external noise sources (detecting false counts from, e.g., oversensi-
tivity of the detector to cosmic rays) with a homogeneous Poisson process with a constant
rate λext per change in voltage. The expected counts per bin (c.f., Eq. (15)) under our model
is now

μk(θ ,λext) = Nesc
θ (Vk+1) – Nesc

θ (Vk) + λext|Vk+1 – Vk|, (20)

as the expected external noise counts in bin (Vk , Vk+1) is μk,ext = λext|Vk+1 – Vk|, and the
sum of two independent Poisson distributions is a Poisson distribution with a summed
expected counts parameter.
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Figure 6 (a) Estimator relative standard error for a plasma with parameters
(T = 2.66K,n0 = 108 cm–3,Rp = 1.0mm,ℓp = 1.0 cm), as a function of added external homogeneous Poisson
noise. Ndata = 0.25Ncyl particles are used in the fit, corresponding to 100 particles. The likelihood function
used in fitting routine is augmented to include a term for the external noise for each bin (see Eq. (20)). The
observed total error matches well with the sums-in-quadrature error ε(λext) =

√
ε2 + γ λext (unbroken red

line). Here ε2ext = γ λext corresponds to the squared amplitude of a homogeneous Poisson process, with the
best fit γ = 6.31× 10–6kBT/q. The relative bias (not plotted) was less than 5% of the standard error for all
tested external homogeneous Poisson noise rates, and was not systematically positive or negative. (b-d) the
simulated escape data (orange) with varying amounts of external noise; the blue line is the sum of the signal
and external noise and the dashed black line is the fit (Eq. (20)). (b) For λext = 8× 102 q/kBT , the fitter gives
temperature T̂ = 2.830K. (c) For λext = 2× 103 q/kBT , the fitter gives temperature T̂ = 2.468K. (d) For
λext = 104 q/kBT , the fitter gives temperature T̂ = 3.438K

In principle, the estimator errors from intrinsic shot noise and homogeneous external
noise should sum in quadrature as

ε2
total = ε2

0 + ε2
ext, (21)

where ε0 is the standard error without external noise. We ran our simulation for a single
set of parameters θ = (T = 2.66 K, n0 = 108 cm–3, Rp = 1.0 mm,ℓp = 1.0 cm), with varying
amounts of external noise added. As before, we use only Ndata = 0.25Ncyl, and we see that
the observed error as a function of noise amplitude, plotted in Fig. 6, shows a good agree-
ment with Eq. (21).

Experimentally, this type of external noise can be essentially zero with an advanced
microchannel plate (MCP) and silicon photomultiplier (SiPM) system, but can be much
larger with less advanced systems [9]. There are other sources of noise that affect the ob-
tained count data and may lead to systematic biases, including persistent “high-energy
tail” particles from imperfect thermalization in preparing the plasma, and variability in
detector response. These noise sources are not adequately modeled by additive external
homogeneous Poisson noise, and thus they will require further investigation in a future
study.

6 Conclusion
In this paper we have shown that shot noise imposes a lower limit of about 3 K for a plasma
of length 1 cm, on the nonneutral plasma temperatures that can be measured with the
standard MCP and SiPM diagnostic. The data analysis required a new algorithm which
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includes data that has been previously neglected (i.e., electrons that arrived after the end
of the linear regime of the diagnostic). This limit is seen to be inversely proportional to the
length of the plasma and for typical parameters independent of plasma density. The algo-
rithm has been demonstrated numerically on synthetic data and is ready for experimen-
tal realization. Many effects are not considered here, such as the variation of the plasma
length with barrier voltage as the plasma escapes and variations of the barrier voltage with
radius. These effects may cause systematic biases whose dependence on plasma parame-
ters and repercussions on inferred temperatures need to be further explored.

Appendix A: Numerical methods
In this Appendix, we present our numerical implementation for solving Beck’s model to
obtain Nesc(θ ) used in our temperature fitter.

A.1 Derivation of the model
Inserting Eq. (11) into Eq. (9) yields a cylindrical Poisson-Boltzmann-like equation, (cf.,
[18]) for φθ in the region r ∈ [0, Rp]:

1
r

d
dr

(
r

dφθ (r; Vb)

dr

)
= –

(
qn0

ε0

)
erf

√
q(Vb – φθ (r; Vb))

kBT
. (22)

Equation (22) with the boundary condition φθ (r = Rw) = 0 from r = Rw to r = Rp can be
integrated to yield

φθ (Rp; Vb) =
qNθ (Vb)

2πε0ℓp
ln

(
Rw

Rp

)
, (23)

where qNθ (Vb)/ℓp serves as the charge per unit length. This is valid for an infinite length
line charge limit (i.e., large ℓp) with azimuthal symmetry, which is assumed.

This may be further simplified by expressing

Nθ (Vb) = 2πℓp

∫ Rp

0
nθ (r; Vb) rdr

= 2πℓp

∫ Rp

0
n0 erf

(√
q(Vb – φθ (r; Vb))

kBT

)
rdr

= –
(

2πℓpε0

q

)∫ Rp

0

1
r

d
dr

(
r

dφθ (r; Vb)

dr

)
rdr

= –
(

2πℓpε0Rp

q

)
dφθ (Rp; Vb)

dr
. (24)

In the third line we insert Eq. (22), and in the fourth line we take the integral in r.
Inserting this expression for N(Vb) into Eq. (23) yields the Robin boundary condition

φθ (Rp; Vb) + Rp ln

(
Rw

Rp

)
dφθ (Rp; Vb)

dr
= 0. (25)

Our system of equations is now entirely in the single function φθ (r; Vb) over the domain
r ∈ [0, Rp], and consists of the ODE Eq. (22), the boundary condition Eq. (25), and the
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Neumann boundary condition at the origin

dφθ (0; Vb)

dr
= 0. (26)

This differential equation cannot be analytically solved, so we must use numerical meth-
ods to approximate its solution.

A.2 Dimensionless variables
For notational simplicity we will drop the subscript θ in φθ (recall θ represents parameters
that are held fixed in the solution) and solve Eq. (22) with boundary conditions Eqs. (25)
and (26).

The first step in the numerical solution is transforming into dimensionless variables
(x,φ, f ):

x :=
r

λD
, (27)

ψ(x; Vb) :=
q[Vb – φ(xλD; Vb)]

kBT
, (28)

f (x; Vb) :=
n(xλD; Vb)

n0
= erf

√
ψ(x; Vb). (29)

Here, x represents the radius in units of Debye length λD, ψ(x; Vb) the barrier height at
x in units of kBT , and f (x; Vb) the fraction of initial particles remaining in the plasma at
normalized radius x. Our definition of ψ differs from Beck’s definition (cf., Eq. (4.46) in
[1]), and is more convenient for numerical solutions.

Equation Eq. (22) transforms into

1
x

d
dx

(
x

dψ(x; Vb)

dx

)
= erf

√
ψ(x; Vb), (30)

with one boundary condition

dψ(0; Vb)

dx
= 0 (31)

at the axial center x = 0, and a second determined by requiring

ψ(xp; Vb) + xp ln

(
Rw

Rp

)
dψ(xp, Vb)

dx
=

qVb

kBT
(32)

at the dimensionless plasma radius x = xp = Rp/λD. We provide code for an inte-
gration algorithm at https://github.com/adriannez/nonneutral-plasma-
temperature/.

After numerically solving for ψ(x; Vb) for x ∈ [0, xp], we evaluate Nesc
θ (Vb) using Eq. (24):

Nesc
θ (Vb) = N0 – Nθ (Vb) (33)

= N0 +
(

2πℓpε0Rp

q

)
dφ(r)

dr

∣∣∣∣
r=Rp

https://github.com/adriannez/nonneutral-plasma-temperature/
https://github.com/adriannez/nonneutral-plasma-temperature/
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= N0

[
1 –

(
2
xp

)
dψ(xp; Vb)

dx

]
. (34)

Here we used Eq. (24) in the second line, and the definition of λD from Eq. (5) in the third.
It can be shown from Eq. (29) that:

Nesc
θ (Vb) = 2π lp

∫ Rp

0
n0[1 – f (r/λD; Vb)]r dr

= 2n0πλ2
Dlp

∫ xp

0
erfc

√
ψ(x; Vb) x dx

= 2Ncyl

∫ xp

0
erfc

√
ψ(x; Vb) x dx, (35)

where erfc(·) = 1 – erf(·) denotes the complementary error function. The number of par-
ticles in a Debye cylinder Ncyl ∝ Tℓp determines the scaling of the escape function.

The mixed boundary conditions at x = 0 and x = xp are satisfied by employing a shooting
method in which the Neumann boundary condition Eq. (31) at x = 0 is supplanted with a
guessed value for ψσ (0), where σ parameterizes the guessed solution. The initial condi-
tions for both ψσ (0) and ψ ′

σ (0) at x = 0 allow for the numerical solution for ψσ (x), from
x = 0 to x = xp.

The values for ψσ (xp) and ψ ′
σ (xp) are used to evaluate the “shot function”

S(σ ; Vb) = ψσ (xp) + xp ln

(
Rw

Rp

)
dψσ (xp)

dx
–

qVb

kBT
. (36)

For a particular value of Vb, the value of σ ∗ that satisfies S(σ ∗; Vb) = 0 corresponds to the
desired ψσ∗ (x) = ψ(x; Vb) that satisfies the boundary condition Eq. (32).

A.3 Naive Lagrangian discretization
In this section, we sketch the Lagrangian-based discretization used in the integration of
Eq. (30). The discretization of Eq. (30) means that we discretize the x-axis into a grid
of step-size �x, with grid-points xn = n�x, with n = 0, 1, . . . , �xp/�x� and approximate
the differential equation Eq. (30) with difference equations that propagate (ψ(xn),ψ ′(xn))

forward to (ψ(xn+1),ψ ′(xn+1)). Then, to numerically integrate from initial conditions
(ψ(xi),ψ ′(xi)) at x = xi to x = xp, we make a forward propagation step of size �xi < �x
to the closest grid-point xni , iterate forward propagation steps of size �x till x = xf =
�x�xp/�x�, and make a final forward propagation step of size �xf = xp – xf to obtain
(ψ(xp),ψ ′(xp)).

The second-order differential equation Eq. (30) has a corresponding Lagrangian:

L(ψ ,ψ ′, x) =
x
2

[(
ψ ′2

2

)
– V (ψ)

]
(37)

where the potential V (ψ) satisfies –dV /dψ = erf
√

ψ . We can then define the conjugate
momentum � of Lagrangian Eq. (37) to be

�(ψ ,ψ ′, x) =
∂L
∂ψ ′ =

(
x
2

)
ψ ′. (38)
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We define the discretized ψ and � values at integer steps of the x grid by:

ψn = ψ(xn) and �n = �(xn)

and the position and slope ψ ′ = dψ/dx at half-integer steps by

xn+1/2 =
xn+1 + xn

2
,

and

ψ ′
n+1/2 =

ψn+1 – ψn

�x
.

Following Ref. [19] (Sec. VI.6.2), we discretize the Lagrangian Eq. (37) to obtain differ-
ence equations that propagate (ψn,�n) forward to (ψn+1,�n+1):

ψ ′
n+1/2 =

(
2

xn+1/2

)
�n +

�x
2

(
xn

xn+1/2
erf

√
ψn

)
, (39)

ψn+1 = ψn + �xψ ′
n+1/2 (40)

and

�n+1 = �n +
�x
2

(
xn

2
erf

√
ψn +

xn+1

2
erf

√
ψn+1

)
. (41)

Advantages of employing a symplectic integration method, in this case with Lagrangian-
based discretization, are that the resulting flows from the discretized difference equations
have an error of o(�x2), as well as much better qualitative stability due to the preservation
of certain geometric invariants [19].

See documented code athttps://www.github.com/adriannez/nonneutral-
plasma-temperature/ for further details about, e.g., how we implement initial con-
ditions.

Appendix B: Monte Carlo simulations
The Monte Carlo simulation starts with parameters θ = (T , n0, Rp,ℓp) and a total of N0 =
�n0πR2

pℓp� (discretized) plasma particles (indexed by α = 1, 2, . . . , N0. Each particle α is
given a randomly generated position rα from which we calculate its potential energy Uα

(by including the field created by other particles and the applied potential). It has axial
kinetic energy Kα = mv2

‖,α/2.
The particles are assigned a random axial velocity v‖,α chosen as follows. The tem-

perature of the plasma T is determines the distribution of kinetic energies by the one-
dimensional Maxwellian distribution: f (K)dK ∝ exp(–K/kBT)

√
KdK . For each of the par-

ticles α, we randomly assign an axial kinetic energy value Kα from this distribution.
From the standpoint of computational complexity, once the positions of the N0 particles

are generated, the calculation of the potentials for the N0 particles has a runtime of O(N2
0 ).

This becomes prohibitively computationally expensive, as the plasmas we simulate have
N0 ≈ O(106) particles.

https://www.github.com/adriannez/nonneutral-plasma-temperature/
https://www.github.com/adriannez/nonneutral-plasma-temperature/
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For the sake of computational tractability, we approximate the potential due to each
particle as if it were a cylindrical shell with radius rα =

√
x2

α + y2
α . Then, the potential energy

of each particle α is:

Uα = q
∑
β �=α

q
2π lpε0

ln

(
Rw

max(rα , rβ)

)
(42)

=
q2Nr<rα
2π lpε0

ln

(
Rw

rα

)
+

∑
β s.t. rβ >rα

q2

2π lpε0
ln

(
Rw

rβ

)
(43)

as each cylindrical shell β with larger radius rβ > rα contributes to a term proportional to
ln(Rw/Rβ), while each cylindrical shell γ with smaller radius rγ > rα contributes to a term
proportional to ln(Rw/Rα). Here, Nr<rα denotes the number of plasma particles whose radii
are smaller than rα .

The particles’ potential energies are found by sorting their radii in increasing order
{r1, r2, . . . , rN0}, and then calculating, starting with the particle with the largest radius rN0 :

UN0 =
q2(N0 – 1)

2π lpε0
ln

(
Rw

rN0

)
, (44)

and iterating towards lower radii:

Uk–1 = Uk +
q2(k – 2)

2π lpε0
ln

(
rk

rk–1

)
, (45)

where Nr<rk–1 = k – 2. The computational runtime when sorting is O(N0 log N0). The total
particle energy is Eα = Kα + Uα .

At any given moment, with N remaining plasma particles (starting with N = N0), we
find the particle α with the highest energy Eα , remove it from the plasma and record its
corresponding escape potential Vα = Eα/q. (This corresponds to when the barrier voltage
Vb is slowly lowered to a value that allows the most energetic particle α in the remaining
plasma to escape, and then recording Vb = Eα/q.) For each remaining particle β , its poten-
tial energy Uβ is lowered by:

Uβ ← Uβ –
q2

2π lpε0
ln

(
Rw

max(rα , rβ)

)
. (46)

Since the particles are sorted by increasing radius, we only need to update Uβ on average
N/2 times per escape. This step is repeated until the desired number of particles escape
(corresponding to Ndata), ultimately giving a computational runtime O(N0Ndata).

Typically, for shorter plasmas with initial plasma length ℓp � 5 cm, the plasma length ℓp

decreases dynamically as plasma particles escape within a desired data ROI regime [20].
Correcting for this effect requires a more detailed model of the plasma beyond Beck’s
model, which we have not pursued in this study.

The Ndata escape voltages {Vα} correspond to a single instance of a plasma with pa-
rameters θ . One simulation has computational runtime O(N0 log N0) + O(N0Ndata) from
the plasma generation and plasma steps, respectively. This is repeated S times to get an
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ensemble of S sets of escape voltages. Each instance is then fed into the temperature di-
agnostic algorithm to obtain the Monte Carlo ensemble estimated parameters {θ̂s}. In our
numerical study, we use S = 1000 for each separate set of plasma parameters.

Appendix C: Priors and degeneracy of fit
We found that for certain parameter regimes the fitter is underconstrained, i.e., there are
multiple parameters yielding nearly the same fit (all with the same temperature ± 2%).
To resolve this, we implement experimentally-motivated priors on a subset of our four
parameters θ . (Experimentally, the plasma length ℓp is an easily manipulated parameter
and total charge Q0 may be readily measurable using a Faraday cup, yielding N0 = Q0/q.)

We reduce our parameter-space to a two-parameter fit using the equality constraints

ℓ̂p = ℓp, (47)

and

n̂0R̂2
p =

N0

πℓp
, (48)

where the plasma length ℓp and total particle count N0 = n0πR2
pℓp are assumed to be

known exactly or within a small range of values. Given these two constraints, we use the
reduced parameters θreduced = (T̂ , φ̂center), with φcenter corresponding to φ0(r = 0):

φ̂center =
qN0

4πε0ℓp

(
1 + 2 ln

(
Rw

R̂p

))
. (49)

We find that this parameter reduction resolves all underconstrained cases.
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