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Abstract

The Effect of Multipole-Enhanced Diffusion on the Joule Heating of a Cold
Non-Neutral Plasma

by

Steven Francis Chapman

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel Fajans, Chair

One proposed technique for trapping anti-atoms is to superimpose a Ioffe-Pritchard style
magnetic-minimum neutral trap on a standard Penning trap used to trap the charged atomic
constituents. Adding a magnetic multipole field in this way removes the azimuthal symme-
try of the ideal Penning trap and introduces a new avenue for radial diffusion. Enhanced
diffusion will lead to increased Joule heating of a non-neutral plasma, potentially adversely
affecting the formation rate of anti-atoms and increasing the required trap depth. We
present a model of this effect, along with an approach to minimizing it, with comparison to
measurements from an intended anti-atom trap.
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Chapter 1

Introduction

1.1 Motivation

One of the fundamental tenants of much of modern theoretical physics is the CPT
theorem. It states that any quantum field theory including locality, Lorentz-invariance, and
a Hermitian Hamiltonian must preserve CPT symmetry [1].

The term CPT stands for the simultaneous combination of three simpler symme-
tries that are not necessarily preserved by such theories. However, all three were originally
theorized to be preserved, until experimental evidence to the contrary was discovered.

Charge conjugation symmetry implies no change in physical law with the inversion
of all electric charges. Among the four fundamental forces, only the weak interactions are
known to break this symmetry.

Parity symmetry implies no change in physical law under a full reflection of the
system, equivalent to reversing left and right-handedness. This symmetry is also only known
to be violated by weak interactions, generally the same interactions that violate charge
conjugation symmetry. In fact, it was once theorized that these were always violated at the
same time, if at all.

Time reversal symmetry implies no change in physical law under a reversal of
the direction of time. In contrast to the previous two symmetries, this one is, apparently,
violated by a significant majority of macroscopic phenomena, thanks to the second law of
thermodynamics. However, observations of microscopic violations are, so far, constrained
to those few phenomena that violate one and only one of the previous two symmetries.

While it may seem that we have a relatively poor track record regarding the preser-
vation of these symmetries, the full combination of CPT is on a notably firmer theoretical
foundation. It cannot be violated without also violating Lorentz invariance. Nonetheless,
it clearly behooves us to place experimental constraints on any possible violations of this
symmetry.

Assuming we don’t anticipate any gross violations of CPT symmetry, the best
way to constrain minor violations is to find a well-understood and thoroughly-measured
system that has an accessible CPT mirror, and inspect the mirrored system as well. Atomic
hydrogen is such a system with atomic antihydrogen as its CPT mirror. Comparison of the
1s → 2s transition in atomic hydrogen and antihydrogen would constrain CPT violation,
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provided it was not actually observed, to, theoretically, one part in 1018 [2].
To perform such a measurement is the primary goal of the antihydrogen Laser

Physics Apparatus (ALPHA) collaboration.
To date, we have successfully trapped antihydrogen [3], but have not yet attempted

to perform laser spectroscopy. Even so, this preliminary achievement is notable in its
own right as a technical benchmark and will also serve as a starting point for any future
experiments with or practical applications of neutral systems of antimatter.

1.2 Scope

The work presented in this thesis was done entirely by members of the ALPHA
collaboration working towards its overarching goals.

However, we will deal exclusively with work focused on diagnosing the temperature
of our plasmas and on the degree to which applying the octupole magnet we use for trapping
can change the temperature of the non-neutral component plasmas.

In the next chapter we will describe the experimental methods and apparatus
used by the ALPHA collaboration with the intention of motivating our interest in the
temperature of our plasmas and the effect that our trapping fields might have on it.

In practice, we find that, when we expose our non-neutral component plasmas
(antiprotons and positrons) to the azimuthally asymmetric magnetic fields needed to trap
electrically neutral antihydrogen atoms they often begin to expand radially at an accelerated
pace. This is often accompanied with a rise in the temperature of the plasmas. For reasons
that will be explained in chapter 2, we wish to avoid this effect as much as possible.

In chapter 3 we will describe, in detail, our technique for determining the temper-
ature of our plasmas along with its limitations.

In chapter 4 we will develop a model for the expansion and heating of our plas-
mas in our trapping fields, with slightly greater generality than required by our specific
experiment.

Finally, we will compare this model to observations.
Additionally, note that, unless otherwise stated, all quantities are in SI units.
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Chapter 2

Experimental Methods

2.1 Trapping charged particles

2.1.1 General Principles

As antihydrogen is not found in nature and cannot be directly produced by any
simple process, we must first procure and trap its charged constituents: antiprotons and
positrons.

Charged particles are held and manipulated in a modified Malmberg-Penning trap
[4]. This trap consists of a number (at least three, in concept) of coaxial, hollow, cylindrical
electrodes placed end to end in a stack and immersed in a strong, (≥ 1T) uniform magnetic
field, provided by a superconducting solenoid, and oriented with the field parallel to the
electrode axes.

Confinement along the axis of the electrodes is provided by applying potentials to
the electrodes. If, in the case of the simplified 3-electrode trap, we apply a negative voltage
to the two outer electrodes and a positive (in either absolute or relative terms) voltage to
the central electrode we will create a potential well along the axis of the electrodes that
will trap negatively charged particles up to some energy determined by the specific voltages

Figure 2.1: simplified depiction of a penning trap: charged particles are confined radially by
the magnetic field and longitudinally by the electric fields produced by the relative biases
of the electrodes. This trap is biased to confine oppositely charged particles in adjacent,
single-electrode long wells.
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applied and the geometry of the electrodes; provided that the electrodes are sufficiently
long, compared to their radius.

Charged particles inside the cylinders are prevented from moving outward radially
by the magnetic field. Kinetic energy perpendicular to the magnetic field will, instead, be
directed into cyclotron motion: circular orbits perpendicular to the field with radius

rc =
mv

qB
∼= (30nm)

√
T

B
(2.1)

for an electron with a thermal velocity.
Unfortunately, the magnetic field does not prevent all large-scale motion of the

particles perpendicular to the magnetic field. Any force driving particles across the magnetic
field will result in a drift velocity perpendicular to both the magnetic field and the perturbing
force.

→
vd=

→
F ×

→
B

qB2
(2.2)

By far, the most important source of additional forces is the electric field. Both
the potentials applied to the electrodes and the space charge of any plasma in the trap will
produce electric fields.

Fortunately, the cylindrical symmetry of our trap and, presumably, plasma ensure
that all electric fields will be almost entirely radial. Thus, the drifts will be azimuthal,
hopefully resulting in no significant changes in plasma distribution over time. This helps to
ensure long lifetimes for the charged particles in the trap.

2.1.2 Specifics of the Trap

The actual trap used in the experiment [3] consists of roughly 35 electrodes split
up into three sections used for different applications. All three sections lie inside a 1T
solenoidal field. See Fig 2.2.

The first section, called the catching trap, is located on the end of the full assembly
henceforth known as the ”upstream” end. This section is used to ”catch” high energy
particles entering this region of the trap. This is done with two special electrodes located at
both ends of the catching trap, which are designed with increased spacing to the electrodes
on either side, so that high voltage (≤ 5kV) can be applied to them safely.

The 11 electrodes in the catching trap have an inner diameter of 33.6mm and have
lengths slightly less than either this diameter, or half its value. The high-voltage electrodes
are, roughly, 50% longer again than the larger normal electrodes.

This region also contains one electrode that has been separated into six angular
sectors that can be biased to different voltages. This allows us to apply azimuthally de-
pendent potentials to the plasma. This is primarily used to compress or expand plasmas
radially, as will be explained in section 2.3.5.

Surrounding the catching trap is a smaller, superconducting solenoid that, when
energized, increases the solenoidal field in the region by up to 2T.

The central section of the trap is where antiprotons and positrons are mixed to
produce antihydrogen. Thus, it is called the mixing trap. The 13 electrodes in this section
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Figure 2.2: Cross-section of the ALPHA experimental apparatus: on the left (upstream)
end, one sees our superconducting solenoid. The sections of Penning trap inside this solenoid
are those cooled by liquid helium and are the primary site for the measurements described.
All other parts of the trap, except for the moderator of the positron source, are at room
temperature.

have an inner diameter of 44.55mm, but maintain the same aspect ratios as in the catching
trap.

This section contains another azimuthally-sectored electrode. This electrode is cut
into four sectors, instead of the six sectors in the catching trap, but the uses of the electrode
are generally the same.

This section of the trap is used for mixing because it is surrounded by a configu-
ration of additional superconducting magnets that can be used to create a local minimum
of the magnetic field inside the trap. Such a field configuration is required for our approach
to trapping antihydrogen. These magnetic fields are discussed in greater detail in section
2.5.

The final region of the trap, called the positron trap, is located at the ”down-
stream” end of the electrode stack. It does not have any additional magnets associated
with it and extends outside of the uniform field of the solenoid. It also contain another
high-voltage electrode used to facilitate the transfer of positrons into the trap. This is
discussed in greater detail in sections 2.2.2 and 2.3.3.

The electrodes in this region are generally of the same sizes as those in the catching
trap. However, there are two much longer electrodes at the extremity of this trap. These
”transfer” electrodes are always kept grounded, and serve the single purpose of shielding
particles entering or leaving the trap on this end.

At the downstream end of the trap is an aperture with a hinged flap that we can
open and close remotely. The primary purpose of this flap is to block thermal radiation.
The trap itself is cryogenically cooled along with the superconducting magnets. The vacuum
system beyond the aperture is, generally, not. Unobstructed line of sight between these two
regions could result in an additional heat load on the order of Watts. However, while we
can observe the effect of this radiation load when the flap is open, experiments indicate that
it does not dominate the temperature of the traps.
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The trap is cooled sufficiently that any residual gasses in the vacuum system should
condense onto any free surface. Thus, the pressure in the cryogenically cooled region should
be lower than in other regions. Keeping the flap closed, while it is certainly not a vacuum
seal, reduces the flow of gasses into the cryogenic region, keeping the pressure lower and
improving the lifetime of particles in the trap.

Beyond the aperture, there are additional transfer electrodes leading to the room-
temperature region of the trap. Crossing the axis of the trap, in this region, is a linear
motion feed-through that can bring various room-temperature devices into alignment with
the trap. This region is also where all of our vacuum pumps connect to the system.

The positron accumulator is at the extreme downstream end of the apparatus.

2.2 Charged particle sources

2.2.1 Electrons

The electrons used in our experiment are produced by a Barium Oxide thermionic
cathode. A current is passed through a tungsten wire pressed against a Barium Oxide disc,
heating the disc to white-hot temperatures when in operation. The entire disc is electrically
biased to a negative potential (on the order of -10V), causing emission of electrons at rates
up to 1 mA.

There are also plates (with apertures, where relevant) on both sides of the cathode,
along the trap axis, that can be biased to direct the electrons into the trap, preferentially,
and alter the spatial spread and energy of the electron beam.

The cathode is located on the linear motion feed-through in the room-temperature
region of the vacuum system. When in use, the cathode can be aligned with the axis of the
trap, or intentionally misaligned. This is outside the physical interior of the main solenoid,
but still inside the fringe field, at a magnitude of around 100 G.

2.2.2 Positrons

Our positrons are produced by the radioactive decay of Sodium-22. They are then
reduced to controllable energies with a solid Neon moderator. Afterward, they are collected
in a Surko-style differential-pumping accumulator [5].

This accumulator is located at the extreme downstream end of the experiment, on
the opposite side of the linear motion feed-through and vacuum pumps from the cryogenic
trap. When we want to transfer the positrons from the accumulator to the trap, we move
the linear motion feed-through until a grounded cylinder is aligned with the axes of the trap
and accumulator, allowing the positrons to pass through unhindered. Due to the gasses used
in the positron accumulator, it is generally valved off from the rest of the experiment.

2.2.3 antiprotons

antiprotons are produced in high-energy (>1GeV) collisions in the Proton Syn-
chrotron at CERN. During operation, regular bunches of the antiprotons are sent to the
antiproton Decelerator facility, where they are reduced in energy via the same techniques
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generally used to increase energy in accelerators. They are finally delivered to the experi-
ments in the antiproton Decelerator hall at roughly 5 MeV.

As we lack the means to capture particles at energies in excess of 5 keV, we pass
the bunch of antiprotons through a metal foil degrader. This has the effect of reducing
the number of antiprotons in the bunch and the energy of those that remain [6]. There is
an optimum, both experimentally and theoretically determined, value for the thickness of
the foil that maximizes that number of antiprotons in a bunch that we can catch. This is
approximately 10,000 antiprotons on a repetition time of roughly 100s.

The antiprotons enter the trap on the upstream end (which is the source of the
term) and are caught in the aptly named catching trap.

2.3 Manipulating Charged Particles

2.3.1 Catching Particles

All particles enter the trap as either a beam or a free-streaming bunch. We need
to find a way to contain these particles and remove their bulk kinetic energy.

To first contain the particles, we select two electrodes in the trap to bound the
region in which we intend to capture the particles. For antiprotons, these are necessarily the
high-voltage electrodes in the catching trap, but we have much more leeway with electrons
and positrons. We then bias the bounding electrode farthest from the source of the particles
in question to a voltage sufficient to stop at least some of the particles.

All remaining electrodes in the bounded region can be grounded. However, they
are usually biased to some configuration that will not stop the particles, but will ease
subsequent manipulations of the particles. For example, when preparing to trap electrons,
which enter the trap as a largely mono-energetic beam, the region is usually biased to a
voltage just below (in magnitude) that required to stop the beam. This helps to reduce the
energy of the particles in the trapping region, and improves our trapping rate.

Then, once the particles are in the intended trap, the other bounding electrode is
also biased, trapping the particles in between. For the antiprotons and positrons, the timing
of this process is, necessarily, finely tuned experimentally. For the electrons, we merely need
to wait for the continuous electron beam to fill the trapping region as well as it can.

2.3.2 Cyclotron Cooling of Particles

Having contained the particles in the trap is not terribly helpful if they still have
tens or thousands of electron volts in energy. Luckily, the particles are in an, at least, 1T
magnetic field and will begin to cyclotron cool, according to

∂T

∂t
= − 2q4

9πm3ε0c3
B2T (2.3)

It is important to remember that cyclotron cooling only works to reduce the energy
of particles in motion perpendicular to the magnetic field, while we are concerned here with
reducing energy parallel to the magnetic field. Thus, this will only work if the particles are
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sufficiently collisional that the temperatures of the particle ensemble both perpendicular
and parallel to the magnetic field are equal.

For electrons and positrons in a 1T field, this process results in an exponential
decay of the temperature to some equilibrium with a time constant of roughly 4s. This
equilibrium is set by all sources of heating to the plasma. Common sources are thermal
radiation from the electrodes and electronic noise on the same. Lepton plasmas in our trap
generally cooled to somewhere between 100K and 10K ( 1meV), by this process, with a
theoretical limit of 4K- set by the temperature of the cryogens used to cool the trap.

However, if one notes the dependence of the cyclotron cooling rate on the particle
mass, it is clear that the process will not cool antiprotons on a reasonable timescale.

To cool antiprotons, we first prepare an electron plasma in a smaller well inside
the larger well in which we first catch the antiprotons The antiprotons undergo a process
called sympathetic cooling [7]. The relatively hot antiprotons collide with the electrons
and transfer some of their kinetic energy. The electrons then cyclotron radiate the energy
away. This allows the antiprotons to cool to the same equilibrium temperature as the
electrons at a rate comparable to the slower of the electron cyclotron cooling rate and the
electron-antiproton collision rate.

2.3.3 Moving Particles

If we would prefer trapped particles to be somewhere other than where they happen
to be trapped, we have two main techniques for getting them there.

We can attempt a controlled movement of the plasma. This is accomplished by
gradually altering the potentials biasing the electrodes, until the final configuration produces
a trap for the plasma in the desired location, or of the desired shape. Of course, care must
be taken to ensure that particles are not lost during the process.

Operations of this sort almost universally result in some heating of the trapped
plasma, due to energy added by the electric fields produced during the potential changes. As
a result, we usually follow all full movements with a wait for cyclotron cooling to take effect.
As this will not work if we’re moving antiprotons, we usually only move those particles in
this manner while they are still trapped in the same well as an electron plasma, allowing
for sympathetic re-cooling.

We can also enact a slightly more dramatic movement, called a dump. The end
result of the potential manipulations of a dump are that the plasma leaves containment
with all electrodes in one direction at a relative negative bias to the energy of the particles
and at least the one adjacent electrode in the other direction at a strong relative positive
bias. This results in the plasma free-streaming at some controlled energy in a particular
direction.

A dump is generally used to remove particles from the trap entirely, though an
analogous process is used to transfer the positrons from their accumulator into the trap.

There are two classes of techniques for enacting a dump, which are chosen between
based on the needs of the particular case. The first is to raise all of the electrodes involved
in trapping a plasma to a positive energy relative to ground, then simply lower the potential
on the bounding electrode(s) in one direction. The second is to arrange the potentials of
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the trap so that the potential barrier is larger in one direction than the other, then increase
the potential of the interior, non-bounding electrodes.

While attempting to dump particles, it is important to remember that electrons
and positrons travel roughly forty times faster than antiprotons at the same temperature.
We take advantage of this fact when we need to remove the electrons used to sympathetically
cool the antiprotons before the latter are mixed with positrons (lest all our positrons be
annihilated). A sufficiently swift dump and return to the original well will allow the electrons
to escape while the majority of the antiprotons will remain trapped, though they will almost
certainly be slightly heated.

2.3.4 Evaporative Cooling

It is often the case that we would like to reduce the temperature of the cloud of
antiprotons without adding electrons, or reduce the temperature of our lepton plasmas below
the normal equilibrium. To accomplish this, we can, at least attempt to, use evaporative
cooling [8].

To evaporatively cool a plasma, we enact a slow, partial dump. That is, we
manipulate the potentials as if performing a dump, but don’t follow through until the plasma
is completely free of the trap. If the depth of the trap is correctly tuned to the space charge
of the plasma, only particles with a higher-than-average kinetic energy can escape the trap.
This results in the average energy of the plasma, and therefore the temperature, decreasing;
at the cost of fewer remaining particles. However, we can experimentally confirm that the
number of particles with kinetic energy corresponding to a temperature below a given value
(say 1K), is increased by this process.

2.3.5 Rotating Wall Manipulation

As previously mentioned, a major strength of a Penning-style trap is that the
cylindrical symmetry of the trap prevents torques on the plasma, which would likely result
in radial expansion and eventual losses. However, by applying controlled torques, we can
alter the radial profile of the plasma to our benefit.

Both the catching and mixing traps contain electrodes cut into angular sectors.
If we apply oscillating potentials to each sector, with phase offsets between sectors corre-
sponding to the angular size of the sectors, we can effectively create an electric field in the
trap that rotates azimuthally. We call this setup a rotating wall. Generally, if the rotation
of the electric field is in the same direction as and at roughly the same rate as the ordinary
E × B rotation of the plasma, we can smoothly either increase or decrease the size of a
plasma in the trap [9].

As an example of when this would be useful, consider the trapping of antiprotons
The size of the antiproton cloud entering the trap is much larger radially than both the
eventual size that we want for the antiproton cloud and the electron plasmas we typically
prepare. antiprotons that do not spatially overlap the electron plasma do not cool and
cannot be trapped. But we can use the rotating wall to increase the size of the electron
plasma, increasing the number of antiprotons we cool. Then, we can compress the electron
plasma back down to the desired size.
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Note that this technique generally does not work on our antiproton clouds on their
own, as they generally lack enough charge to produce a significant electric field. However,
when immersed in an electron plasma, the antiprotons distribution follows the electron
distribution, by and large, during compression or expansion.

2.4 Diagnosing Charged Particles

2.4.1 Faraday Cup

The most basic possible diagnostic of the particles is a check of whether or not
we’ve managed to trap any. We can check the number of charged particles in the trap with
a diagnostic device we call the Faraday cup.

To use the diagnostic, we simply dump particles towards the upstream end of the
trap. They will impact the final antiproton degrader, an electrically isolated foil connected
to an amplifier. This foil can be electrically biased to potentially improve extraction of a
particular particle species. Thus, provided we can determine the capacitance of the entire
assembly, we can directly relate the signal to charge impacting the foil.

Unfortunately, the behavior of this diagnostic is not necessarily consistent for
various particle species. When the antimatter particles impact on the foil, their annihilation
may release sufficient energy to eject charged particles from the foil. As the resolution of
our implementation of this diagnostic was only on the order of a million particles, however,
we never observed this variation across particle species via this diagnostic.

2.4.2 Microchannel Plate

The Faraday cup diagnostic has two major downsides. First, it is not terribly
precise. A resolution of only a million particles leaves it unable to even detect most of our
antiproton clouds. Second, it tells us little or nothing about the distribution of the plasmas.
For tasks where the Faraday cup is insufficient, we also have a Microchannel plate (MCP)
assembly.

The assembly consists of the MCP itself and a phosphor screen. The MCP am-
plifies charge that impacts its front surface, while maintaining its two-dimensional spatial
distribution. The phosphor screen then converts the amplified charge into light. This,
combined with a mirror and a CCD camera, allows us to visually determine the spatial
distribution of a particle cloud in the trap, integrated along the trap axis.

This information, if combined with a detailed knowledge of the potentials produced
by the electrodes, allows one to numerically compute the full spatial distribution of the
cloud, if desired.

The MCP itself is a plate filled with small (15 µm) channels through it. When
in use, the front of the plate is electrically biased to draw in the particles being diagnosed,
usually to ± 100V.

The back of the plate is biased to a positive voltage, relative to the front plate.
When a particle impacts the wall of a channel with sufficient energy, it may kick out
electrons into the channel. These electrons are accelerated down the channel by the electric
field between the front and back plates of the MCP. However, these channels are at an angle
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relative to this field, so the electrons typically impact the channel wall again, potentially
kicking out even more electrons. Thus, by tuning the voltage difference across the MCP,
we can scale the number of electrons leaving the back of the plate for every charge hitting
the front of the plate: the charge gain of the MCP.

Of course, there is a limit on the number of electrons that can be provided by a
given channel over the time scale of a single measurement. If this limit is exceeded, either
due to too high a gain or too many particles hitting the front of the plate, the MCP saturates
and most information is lost.

The phosphor screen is, itself, biased to a positive voltage relative to the back of
the MCP to accelerate the electrons leaving the MCP onto its surface. The harder the
particles hit the phosphor screen, the more light released by the impact. Thus, the relative
voltage between the MCP and the phosphor screen can be tuned to adjust the light gain,
with the goal of making the image bright enough to be easily seen without saturating the
CCD camera.

Of course, the behavior of the various species of particles differ when impacting the
front of the MCP. For example, antiprotons typically annihilate, spraying decay products in
all directions, including across nearby channels or out of the MCP entirely. However, unlike
with the Faraday cup diagnostic, we have sufficient resolution to observe and characterize
these effects, allowing us to correct for them [10].

In addition to determining the spatial distribution of a particle cloud, the MCP
can also be used as a sensitive charge counting device by measuring the change in the voltage
of the back of the MCP as the electrons escape to the phosphor screen. At maximum charge
gain, we can very nearly detect a single electron. Unfortunately, as the two possible uses
for the MCP assembly generally require very different biasing voltages, we cannot generally
perform both measurements at the same time.

The MCP is located on the linear motion feed-through with the electron source.
Thus, when we want to use the device, we align the MCP with the trap axis and bias the
assembly, depending on the specific use intended.

2.4.3 Modes

In addition to applying voltages to the electrodes, we can also monitor the voltage
on them. There are two main sources of induced voltages of the electrodes: capacitive
coupling from other electrodes and coupling to the electric field of a plasma in the trap.

If we perturb a trapped plasma by adding a small, varying potential to one of the
confining potentials, the plasma will presumably respond by changing shape or position over
time. The plasma should preferentially respond at frequencies corresponding to its various
modes of oscillation around whatever equilibrium it happens to be in [11]. By carefully
monitoring the coupling of the plasma to an electrode other than the one being used to
perturb it, we can determine the frequencies of these modes and, thereby, determine a wide
variety of information about the plasma, such as its shape or temperature.

The major advantage of this diagnostic is that it does not destroy the plasma,
which can then be used for other measurements afterward. Therefore, it can be a useful
check of the trial to trial consistency of experiments.
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Unfortunately, this diagnostic also requires a detailed theoretical model of the
plasma, if you want any information more detailed than whether or not there is a plasma
in the trap. As we were not convinced that we had such a model in a sufficiently robust
state, we generally did not use this diagnostic.

2.4.4 Annihilation Detection

One limitation of the afore-mentioned diagnostics is that they largely rely on the
electric charge of the particles being diagnosed. That is, they are generally less able to
diagnose antiprotons, due to our usually not having as many of them. However, it is far
easier to detect the absorption of an antiproton if, instead of measuring its direct charge,
we look for its decay products.

Annihilations of an antiproton with a proton at low energies typically result
charged pions [12], with sufficient kinetic energy to easily leave the entire trap and pass
outward through the vacuum system and magnets.

Surrounding the innermost magnets, we have a silicon vertex detector [13]. It
consists primarily of a multilayer array of short strips of doped silicon, biased so that
any charged particle passing through a strip produces, with some efficiency, a detectable
ionization current. As a charged pion passes through this detector, it must pass through
several strips, allowing us to determine the path of the particle through the detector and
extrapolate its path back into the trap. If an annihilation produces multiple charged pions,
we can follow the multiple paths back to their intersection point, where the antiproton
originally annihilated.

Thus, we can reconstruct the spatial distribution of antiprotons, when they annihi-
lated, as well as an estimate of the total number. Also, due to the somewhat involved vertex
reconstruction procedure, the measurement has a very low background. Cosmic rays pass
through and trigger the detector, but their paths, when reconstructed, are almost always
inconsistent with an antiproton annihilation.

Outside of the main solenoid, we also have several scintillator detectors surrounding
the experiment. These consist of a large slab of scintillator attached to a photo-multiplier
tube (PMT). Light is produced when a charged particle passes through the scintillator,
which is picked up and amplified by the PMT and then converted to an electrical signal.
Unfortunately, these detectors have no spatial resolution outside of having finite size and
are generally only used for counting the number of antiproton annihilations.

With all of these diagnostics, we can detect the annihilation of a single antiproton
with an efficiency of roughly 50%.

2.5 Trapping Neutral Systems

Unfortunately, our Penning-style trap is completely unable to also trap the neutral
anti-atoms we produce. A neutral atom is unaffected by the electric field produced by the
electrodes, provided that the field is not strong enough to ionize the atom, and is unaffected
by a constant magnetic field. Thus, without modifications to the trap, any antihydrogen
produced will immediately begin drifting towards the electrode wall, where it will annihilate.
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However, an antihydrogen atom will have a magnetic moment, depending on which
atomic state it happens to be in [14]. Thus, it will feel a force from any gradient in the
magnetic field and can potentially be trapped in a local minimum of the magnetic field.

Producing a magnetic gradient along the axis of the trap is relatively simple. A
short magnetic coil, called a mirror coil, placed around the trap will produce a magnetic
field that is a maximum, along the axis of the trap, in the center of the coil. Two such coils,
placed sufficiently far apart along the axis of the trap, will create a local minimum of the
magnetic field between them.

We produce a radial magnetic gradient with a multipole magnet. An ideal n-pole
magnet consists of n infinite, parallel wires arranged, evenly-spaced around a cylinder. Each
wire carries the same current, but the direction of the current reverses between adjacent
wires. Of course, such an arrangement is only possible for even n, and multipoles will
henceforth be characterized by their order α ≡ n/2, radius R, and field strength β. For
an ideal multipole, β = αµ0I

2πR . Such an arrangement produces a magnetic field inside the
cylinder,

~B = β

(
r

R

)α−1 (
cos(αθ)θ̂ + sin(αθ)r̂

)
(2.4)

Note that the magnitude of this field∣∣∣ ~B∣∣∣ = β

(
r

R

)α−1

(2.5)

is a minimum in the center of the trap.
Of course, our physical multipole is not infinite in length and consists of wires

with finite thickness. Thus, this is only approximately the field produced. However, so
long as the particles are near both the radial and longitudinal center of the magnet, the
approximation is good to within a few percent.

It is also important to make sure the addition of the mirror coil and multipole
fields, particularly the end-effects caused by our physical multipole, does not result in local
minima of the magnetic field off axis, where otherwise trapped atoms would be able to
escape the trap. However, this is merely a matter of careful magnet design followed by
thorough field-mapping [15].

Thus, by energizing both the mirror coils and the multipole, we can produce a
local minimum of the magnetic field that will trap any sufficiently cold anti-atoms in an
appropriate atomic state that happen to be inside it.

2.6 Superposition

As we can produce both a trap for charged particles and a trap for neutral atoms,
the simple solution is simply to put them together. Unfortunately, the addition of one
affects the other.

The depth of the neutral trap is set by the integral of the gradient of the magnetic
field from the center of the trap to the point of easiest escape. That will be equal to the
difference between the magnetic field magnitude in the center of the trap and the least of
the field in the center of the mirror coils or the field at the electrode wall from the multipole.
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Due to a combination of geometric and technological constraints our multipole, an
octupole, is the weaker point in our magnetic-minimum trap. If we assume that the radius
of the electrodes is very near the radius of the multipole magnet, the depth of the trap will
be

∆ |B| =
√
B2

0 + β2 −B0 (2.6)

where B0 is the magnetic field produced by the background solenoid of the Penning trap.
Thus, when designing such a superposition of traps, one has to decide both how

weak the Penning trap’s solenoid needs to be relative to the multipole (as the former will
almost certainly not be as constrained by technology as the latter) to maintain a reasonable
neutral trap depth and how weak it can be while still maintaining confinement for charged
particles.

In the ALPHA experiment, we decided on a minimum solenoidal field of 1T and
produced an octupole magnet with a maximum tested field of nearly 2T at the wall. The
energy depth of the well is simply the product of the field depth and the magnetic moment
of ground state antihydrogen, giving an energy depth on the order of 0.7K. Of course, atoms
in excited states are likely to have much larger magnetic moments and can be trapped at
higher energies, but will be lost eventually if they do not cool before reaching the ground
state.

Regardless, as the walls of our trap are only cooled by standard liquid helium, 4K
is the minimum temperature we would ever expect to see for any atoms we produced. Thus,
at the very best, we would still only expect to be able to trap a small fraction of any total
sample we produced.

Additionally, the gradient added to the magnetic field for trapping atoms will also
affect charged particles. When energized, the mirror coils will have a tendency to reflect
insufficiently energetic charged particles that we attempt to pass through them, limiting
our ability to transport particles in the trap. The multipole will also produce magnetic field
lines that diverge into the electrode walls. Thus, if we have a plasma with a sufficiently large
radius or in a sufficiently long well, particles will be lost almost immediately by annihilation
on the walls [16].

Thankfully, these effects can be minimized by keeping our plasmas small and
limiting their movement through the neutral trap when it is energized. Though, this does
greatly limit our ability to diagnose charged particles when they are inside the neutral trap.

A slightly more subtle complication is that a multipole field is not azimuthally
symmetric. Thus, the symmetry of the Penning trap is broken and radial transport may be
significantly enhanced, a topic that will be covered, in detail, in a later chapter.
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Chapter 3

The Temperature Diagnostic

3.1 Principles of the Temperature Diagnostic

Note: Our temperature diagnostic was inspired, almost entirely, by the work of
Dr. Brett Beck as recorded in his dissertation [17]. Sections 1-3 are a re-derivation of this
work.

By definition, the temperature of a plasma is related to the distribution of kinetic
energy of its constituents. As we reduce the depth of the well containing the plasma, those
particles with the highest energy along the direction of the magnetic field will escape first.
So, by carefully recording both the number of particles to escape and the depth of the well
over time, we can, in theory, determine the temperature of a plasma.

3.1.1 Equilibrium

The most fundamental assumption required for the temperature diagnostic is that
the plasma has a single temperature. That is, the plasma, or at least the portion of it that
the diagnostic samples, is in global thermal equilibrium. More specifically, we assume that
the distribution of kinetic energy along the direction of the solenoidal magnetic field is a
Maxwell-Boltzmann distribution.

The plasma reaches and maintains equilibrium via collisions. Thus, to maintain the
validity of our assumption, we must ensure either that all manipulations of the plasma prior
to measurement occur on a time scale slower than the collision time or that no measurements
are taken until the plasma has had many collision times over which to approach equilibrium.

An important consequence of this assumption, when combined with the intended
geometry of our apparatus, is that no parameters in the plasma will vary azimuthally. Thus,
we will largely ignore the angular coordinate.

3.1.2 Energy Precision

Our second fundamental assumption is a definite relation between the energy of a
particle and whether or not it escapes the well. Specifically, we assume that particles escape
the trap if and only if they satisfy 1

2mv
2
|| + qΦ(r) > qVb, where v|| is the particle velocity

parallel to the magnetic field (in the longitudinal center of the trap) and Φ(r) is the depth
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of the plasma space charge. Since the effective potential depth of the well is Vb − Φ, this
is essentially requiring that escaping particles have kinetic energy in the center of the trap
greater than the total potential energy needed to escape it.

Since we change Vb at only one end of the trap, matching this assumption requires
that we conduct the actual measurement over a time scale slow compared to the bounce
time. Otherwise particles escaping the trap at a given time will actually possess a range
of energies, equal to roughly 2qτb

δVb
δt , greater than the value corresponding to the current

Vb depending on where the particles happened to be, longitudinally, in the trap when Vb
passed through the value corresponding to their energy. Granted, this effect will always be
present, but if τb

δVb
δt is small enough, we can safely neglect it.

This assumption also requires that the energy of an individual particle parallel
to the magnetic field does not change significantly over the course of the measurement.
Specifically, we require that the measurement is fast compared to a collision time.

During the course of the measurement, the plasma is necessarily not in global
thermal equilibrium, as the higher energy particles are being preferentially removed. If
there is time for collisions to repopulate the higher energy states, the loss of particles will be
higher than expected in this model. Also, the effective temperature of the remaining plasma
will be decreased by what is, essentially, evaporative cooling; adding another complication
to the model. Of course, it is possible, if difficult, to correct for these effects, but it requires
a knowledge of the properties of the plasma that is rather more precise than we would like
to constrain ourselves with.

Combining these two caveats results in the realization that this particular model
is only applicable for plasmas in which the collision rate is much slower than the bounce
rate.

3.1.3 Length Effects

Another, less vital, assumption of the temperature diagnostic is that the plasma
is of infinite length. This is, for any effects that are dependent on the length of the plasma,
we take the limit as the length goes to infinity, in which such effects generally go to zero.

We are generally interested in the temperatures of plasmas that are well-confined.
A plasma that is undergoing the diagnostic is necessarily not well-confined. Thus, the shape
of the well changes both before and during the diagnostic, resulting in an increase in the
length of the plasma.

As these manipulations cause a finite, absolute change in the length of plasma,
there will be no effective change in a plasma of infinite length, which the model assumes.
Unfortunately, many of the plasmas used in our actual experiments were short enough that
numerical calculations suggest deviations from the model on the order of tens of percent.
However, corrections to these effects can, luckily, be applied after the measurement, and do
not alter the derivation of the model.

Another class of finite-length effects comes from our neglect of any longitudinal
variation in the plasma parameters. In a long plasma, we expect the density, space charge,
and the like to be constant, except at the ends of the plasma. And when the plasma is suffi-
ciently long, the ends of the plasma, where such parameters are necessarily changing quickly
to maintain continuity between parameters inside and outside of the plasma, contribute a
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negligible effect. Even for a shorter plasma, our derivation will remain largely valid, assum-
ing all plasma parameters mentioned can be considered in the longitudinal center of the
plasma only.

3.1.4 Radial Variation

The model also completely neglects any radial variation in the temperature of the
plasma or the blocking potential.

One would not expect any spatial variation in the temperature of the plasma, as
we’ve already assumed that it is in global thermal equilibrium.

On the other hand, Vb certainly does vary with radius, less so if one utilizes a
blocking electrode that is very long compared to its radius.

Thankfully, due to the nature of the diagnostic, we need only neglect radial vari-
ations out to a finite radius, on the order of the Debye length, for the model to retain
validity. The space charge of the plasma will be highest in its radial center. For a given
applied electrode excitation, Vb will be lowest in the radial center of the trap, which coin-
cides with the center of the plasma. The diagnostic is only intended to sample the highest
energy particles, and is only applied to the earliest particles to leave the trap. Thus, the
diagnostic will only sample particles out to some finite radius and we only need to neglect
radial variations out to this radius, which we must ensure is, in fact, small compared to the
size of the actual plasma.

Similarly, any parameter that varies with radius will, by symmetry, be either a
maximum or a minimum in the center of the plasma. Thus, near the center, radial variation
of parameters will be reduced by virtue of having a first derivative of zero.

3.2 High-Temperature Diagnostic

3.2.1 Derivation

The space charge of the plasma is, of course, due to the electric charge of its
constituent particles. Thus, as particles escape during the diagnostic, the space charge of
the plasma will decrease. In order to derive a relatively simple model for the number of
particles escaping from a well as a function of Vb, we will, for now, neglect this effect.

This is not terribly unreasonable, as the diagnostic is only intended to sample the
first particles to escape. As these will, generally, be only a small fraction of the particles in
the plasma, the change in the space charge should be negligible.

Unfortunately, this condition becomes harder and harder to preserve for colder
plasmas. As the particles become more concentrated in states of lower energy, the energy
resolution required to release only a small fraction of them becomes higher and higher.
Eventually, one will reach the limits of their apparatus and no longer be able to extract
particles without substantially changing the space charge. However, for sufficiently hot
plasmas, this is not a concern.

So, we begin by assuming that the distribution of velocities parallel to the magnetic
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field follow a one-dimensional, normalized Maxwell-Boltzmann distribution:

n(v||) = n0

√
2m

πkBT
e
−
mv2||
2kBT . (3.1)

To determine the number of particles that have escaped, we simply integrate this

distribution over all velocities greater than
√

(Vb − Φ)2q
m . Considering only a specific radius

yields

dNe(r) = 2πrdr lp n(r)

∫ ∞√
(Vb−Φ) 2q

m

√
2m

πkBT
e
−
mv2||
2kBT dv||

= 2πrdr lp n(r)erfc

[√
(Vb − Φ)

q

kBT

]
≡ 2πrdr lp n(r)erfc(γ),

where we have used the complimentary error function, erfc(x) ≡ 2√
π

∫∞
x e−t

2
dt, and defined

γ2 ≡ (Vb − Φ) q
kBT

, the parallel kinetic energy (measured at the longitudinal center of the
trap) required to escape the trap, normalized to the thermal energy of the plasma.

To determine the total amount of escaped charge, we simply integrate this expres-
sion over all radii. Though, due to the finite nature of our plasma, it suffices to integrate
out to some arbitrarily large radius, R.

Ne = 2πlp

∫ R

0
n(r) · erfc(γ) · rdr. (3.2)

We expect thatNe will depend roughly exponentially on Vb in the region of interest.
In such a case, the ratio of its derivative to its value will give us the exponential dependence.

1

Ne

∂Ne

∂Vb
=

∂

∂Vb
ln(Ne) =

∫ R
0 n(r) ∂

∂Vb
erfc(γ)∫ R

0 n(r)erfc(γ)
. (3.3)

Combining the chain rule for differentiation and the fundamental theorem of cal-
culus with the definition of the complimentary error function and γ gives us that

∂

∂Vb
erfc(γ) =

∂γ

∂Vb

∂

∂γ
erfc(γ)

=
q

2γkBT

2√
π

∂

∂γ

∫ ∞
γ

e−t
2
dt

=
−q√
πkBTγ

e−γ
2
.

So now, if we also apply our prior assumptions about the lack of radial variation in T, we
have

∂

∂Vb
ln(Ne) =

−q√
πkBT

∫ R
0 n(r) 1

γ e
−γ2∫ R

0 n(r)erfc(γ)
.
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We further simplify by applying an asymptotic expansion of the complementary
error function, valid for large arguments.

erfc(x) =
e−x

2

x
√
π

(
1− 1

2x2
+

3

4x4
− ...

)
.

For values of x ≥ 2 the terms after the first contribute less than 10%. Since we
are only interested in large values of γ - or particles with energy far in excess of the thermal
average - we will drop all but the first term in the expansion, yielding

∂

∂Vb
ln(Ne) ≈

−q
kBT

∫ R
0 n(r) 1

γ e
−γ2∫ R

0 n(r) 1
γ e
−γ2

=
−q
kBT

. (3.4)

3.2.2 End of the High-Temperature Limit

It is helpful to have a more concrete understanding of the conditions where the
high-temperature diagnostic is applicable than simply saying γ ≥ 2. We can, instead,
consider the total amount of charge we expect to escape before our condition on γ is violated.

Once again, the total number of escaped charges at a given radius is given by

dNe(r) = 2πrdr lp n(r)erfc(γ).

In order to determine how γ varies with radius, we’ll have to assume a density
distribution for the plasma. If we assume that the plasma density is constant in the center
of the plasma, at least out to a distance of several Debye lengths, we can determine the
space charge of the plasma (Φ(r)) and write

Φ(r) = Φ(0)− qn(0)

4ε0
r2.

We know that γ will be lowest in the radial center of the plasma. Thus, taking
the condition that γ ≥ 2 everywhere to its limit sets the value of Φ(0).

γ =

√
q

kBT
(Vb − Φ(r))

2 =

√
q

kBT
(Vb − Φ(0))

γ2 =
q

kBT

(
4
kBT

q
+
qn(0)

4ε0
r2
)
.

If we rephrase this in terms of the Debye length, we can write the total number of
escaped charges at a given radius as

dNe(r) = 2πrdr lp n(r)erfc

√4 +

(
r

2λD

)2
 .
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This also helps to make clear why we only care about the density of the plasma
within a few Debye lengths of the radial center. The amount of charge escaping at a given
radius will be roughly exponentially damped over a scale comparable to a Debye length.

Regardless, to determine the maximum amount of charge we can expect to ex-
tract without invalidating the high-temperature diagnostic, we merely have to integrate
this expression. We can, in principle, do this over all radii or out to some, sufficiently large,
radius.

Ne = 8πλ2
Dlpn(0)

∫
erfc

(√
4 + x2

)
xdx

Here we have defined a scaled coordinate (x ≡ r/2λD) to move all dimensional
parameters outside of the integral. The value of the integral is approximately 2.15× 10−3.

Thus, we can interpret this result to say that we can extract only around 2% of
the particles within a single Debye length of the center of the plasma without invalidating
the high temperature diagnostic.

It is also useful to note that the product of the plasma density and the Debye
length squared is, in fact, independent of the plasma density and is linearly proportional to
the plasma temperature.

3.3 Low-Temperature Diagnostic

As we’ve just seen, for colder plasmas, it will become more and more technically
difficult to extract sufficient charge to make a measurement while keeping γ ≥ 2, and we
can no longer neglect the change in space charge as particles escape. As we would still like
to be able to measure the temperature of these plasmas, we require a more accurate model.

3.3.1 New Assumptions

In order to correct for the change in space charge due to escaping charge, we will
need to know the radial distribution of escaping charge, in addition to the initial radial
distribution of the plasma. Unfortunately, we cannot know this a priori and will need to
make some additional simplifying assumptions. This assumption will be to neglect radial
variation in the initial plasma density.

Initially, this may seem like an absurd assumption, as the fact that our plasma
is necessarily finite in radial extent requires that its density varies with radius. However,
as we demonstrated in the previous section, charge will preferentially escape from near
the radial center of the plasma. Specifically, for the case of a constant density distribu-
tion, the density of the charge that escapes during the diagnostic will scale with radius as

erfc

(√
4 + (r/2λD)2

)
. If we integrate this out, we see that charges escaping at a radius

of greater than 5 Debye lengths will be less than one part in 1010 of all escaping charge.
Thus, so long as the plasma Debye length is much smaller than the radial extent of the
plasma, we are justified in neglecting any charge escaping outside this radius. And since
this means we’re only concerned with the plasma very close to the radial center, where the
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plasma density is constant to first order, we can safely neglect radial variation in the plasma
density.

3.3.2 Derivation

Thanks to the principle of superposition, we know that the change in space charge
(Φe) resulting from the escape of charges (ne) is simply going to be the potential produced
by said charges before they escaped, assuming that we don’t release enough charge to cause
large-scale reorganization of the plasma.

So,

∇2Φe =
q

ε0
ne(r). (3.5)

While deriving Equation 3.2, we found that

ne(r) = n0erfc

(√
q

kBT
(Vb − Φ(r))

)
= n0erfc

(√
q

kBT
(Vb − Φ0(r) + Φe(r))

)
,

where the subscript 0 denotes the value of quantities before any particles escape.
Since we’re only considering the plasma within a small distance of the radial center

and are neglecting radial variation in the density within that range, we can write that

Φ0(r) = Φ0(0) +
qn0

4ε0
r2

= Φ0(0) +
kBT

4πε0q

(
r

2λD

)2

,

where we’ve used the value of the Debye length, λ2
D = kBT

4πq2n
.

Now, our differential equation becomes

∇2Φe =
qn0

ε0
erfc

√ q

kBT
(Vb − Φ0(0) + Φe(r)) +

1

4πε0

(
r

2λD

)2
 .

To simplify, we make two substitutions. We define a scaled coordinate, x ≡√
1

4πε0
r
λD

and a scaled potential, Ψ ≡ q
kBT

(Vb − Φ0(0) + Φe).

This leaves us with

∇2
xΨ = −erfc

√Ψ +

(
x

2

)2
 , (3.6)

or with azimuthal symmetry and ignoring end effects,

(
∂

∂x
+

1

x

)
∂Ψ

∂x
= −erfc

√Ψ +

(
x

2

)2
 . (3.7)
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There is, not surprisingly, no analytic solution to this differential equation, but it can be
integrated numerically, provided we have appropriate boundary conditions. That is, we now
know Ψ(x), provided we know Ψ(0) and Ψ′(0).

Determining Ψ′(0) is rather trivial, as Ψ′(0) = q
kBT

Φ′e(0). Due to the symmetry of
the problem, the potential contribution from the escaped charge must be either a maximum
or a minimum at r=0. Either way, we have that Ψ′(0) = 0.

To determine the boundary condition for the value of Ψ, we merely need to main-
tain consistency with the applied voltage on the electrode walls. As the voltage applied
to the electrodes is not changed by the escape of charge from the trap, though our power
supplies may be required to supply current to maintain this situation, it must be that
Φe(Rw) = 0.

We can, in principle, use this information to determine Φe(0) and, thereby, Ψ(0).
Unfortunately, we would first need to know ne as a function of radius, which is what we’re
trying to determine in the first place.

We make the simplifying assumption that all escaped charge comes from within
some radius, rm and in an azimuthally symmetric distribution. From Gauss’ Law, we
conclude that

Φe(rm) =
qNe

2πε0lp
ln

(
Rw
rm

)
.

So, now we can numerically determine Ψ(x), provided we know the total amount
of escaped charge: the quantity of actual interest.

To develop an expression for the total amount of escaped charge, we start by
substituting our new variables into our expression for the escaping charge distribution:

ne(x) = n0erfc

√
Ψ +

(
x

2

)2

.

This implies that the total number of escaped particles, which we assume come
from entirely within some radius rm, is

Ne = 2πlp

∫ rm

0
ne(r)rdr

= 2πlpn0

∫ rm

0
erfc

√
Ψ +

(
x

2

)2

rdr

= 8π2ε0lpn0λ
2
d

∫ xm

0
erfc

√
Ψ +

(
x

2

)2

xdx. (3.8)

We can condense this a bit by defining the function

η ≡
∫ xm

0
erfc

√
Ψ +

(
x

2

)2

xdx. (3.9)

η is, necessarily, a numeric function which encapsulates all of the calculations
required to determine the amount of escaped charge, in terms of parameters of the initial
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plasma. It is a function, instead of a single value, as we have not yet set the value of Ψ(0)
and, thereby, Ψ(x). So, our expression becomes

Ne = 8π2ε0lpn0λ
2
dη(Ψ(0)). (3.10)

If we substitute this back into our expression for Φe(rm), we get

Φe(rm) = 4πqn0λ
2
dη(Ψ(0)) ln

(
Rw
rm

)
=

kBT

q
η(Ψ(0)) ln

(
Rw
rm

)
Ψ(rm) =

q

kBT
(Vb − Φ0(0)) + η(Ψ(0)) ln

(
Rw
rm

)
. (3.11)

Now, if we provide values of Vb, Φ0(0), lp, n0, Rw, and T; we can combine Equations
3.7, 3.9, 3.10, and 3.11 to numerically calculate the total escaped charge. By varying Vb
at a fixed value of the other parameters, we can produce a curve of escaped charge as a
function of blocking potential. In theory, we know or can measure Φ0(0), lp, n0, and Rw
ahead of time. In this case, we have a family of curves determined by their one remaining
free parameter, T, and can fit to match data using regression. Even if we don’t have this
information we can, in practice still generate families of curves and fit for any unknown
parameters.

In Figure 3.1, we present a selection of such curves for a variety of possible plasma
temperatures. Note that the number of charges usable in the diagnostic and the voltage
range over which they emerge are both proportional to the temperature. Adjustments in
the space charge of the plasma shift the curves along the voltage axis. Adjustments to the
plasma length provide a simple multiplicative scaling of the curve. Finally, adjustments to
the plasma density alter the character of the curves’ deviation from perfect exponentials.
The wall radius cannot be changed, so we generally do not bother fitting for it or allowing
it to vary.

3.4 Multi-Species Plasmas

The temperature diagnostic was derived for the case of a single-species plasma.
However, in order to create antihydrogen, we must mix positrons and antiprotons. In order
to cool the antiprotons, we mix them with electrons. It may be helpful to consider if we
can still properly diagnose the temperature of a plasma containing more than one species
of particle.

First, we should consider the different methods available for detecting leptons and
baryons. We typically count antiprotons leaving the trap by detecting their annihilation on
the confinement chamber. This method is not available for counting our leptons as electrons
do not annihilate on the wall and we lack efficient gamma ray detectors for observing
positron annihilations. We count leptons by extracting them to either our MCP assembly
or our Faraday cup. This method is also available for antiprotons.

The MCP response to an antiproton is typically several hundred times greater
than for a lepton [10]. Thus, if we have comparable numbers of leptons and antiprotons
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Figure 3.1: Escaping charge as a function of well depth where we have corrected for the
plasma’s changing space charge, as particles escape. Such curves can be rapidly generated
and used to fit experimental data.
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and extract them both at the same time, the signal of the antiprotons on the MCP will
completely dominate the measurement. On the other hand, we often have many orders
of magnitude more leptons than antiprotons. In this case, the signal on the MCP will be
dominated by the leptons. In short, it is likely that the MCP will only be able to analyze
one of the two species in the trap. Though, so long as we’re willing to assume that the two
species are in thermal equilibrium, we only need to determine the temperature of one of
them.

Of course, this consideration only applies if the two species have the same sign of
charge, as oppositely charged species will not be extracted to the same location by the same
potential manipulations.

If we have a plasma of two species with the same charge, we might expect that they
would arrange themselves in the same spatial configuration, with the ratio of the densities
of the two species anywhere in the plasma a constant equal to the ratio of the total number
of both particles.

We can consider the two cases of our multi-species plasma and an otherwise iden-
tical single-species plasma, with the same charge density distribution and temperature. As
we extract particles from either plasma, we should see the same total charge escape, so long
as we are within a region in parameter space where the temperature diagnostic is valid for
both species. However, as none of our detection methods treat the various particle species
identically, the measured charge will change, resulting in a measured charge that is merely
proportional to that for the single species plasma. Thankfully, this will have no impact at
all on the high-temperature diagnostic and is trivially correctable for the low-temperature
diagnostic.

An additional consideration is introduced by the specific geometry of our experi-
ment. The plasmas are usually located over a meter from the MCP. If the two species have
a significant mass difference, as in the case of antiprotons and electrons, one species may
have a significantly longer travel time to the MCP.

Consider two species with particle masses m1 and m2. If the combined plasma was
in thermal equilibrium, the two species should have the same temperature and the same
average kinetic energy parallel to the magnetic field. We want to compare the travel times
of these two species, τ , over some travel distance lt.

1

2
m1v

2
1 =

1

2
m2v

2
2 = EK

τ2 − τ1 = lt

(
1

v2
− 1

v1

)
τ2 − τ1 = lt

√
m1

2EK

(√
m2

m1
− 1

)
.

If electrons and antiprotons are extracted from our trap at an energy of 10 eV,
as is typical, the antiprotons will take, roughly, 22 µs longer to reach the MCP. This is,
unfortunately, above our usual resolution of 1-10 µs.

However, if we’re in the domain where the high-temperature diagnostic is appli-
cable, the signals on the MCP from both species should be exponentials with the same
damping but differing amplitudes, based on the relative densities of the two species and
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their gains on the MCP. Adding a time-delay to a pure exponential is equivalent to chang-
ing its amplitude and leaving its damping unchanged. Thus, even if the variable travel time
of particle species is significant over the course of a measurement, it should not hinder the
high temperature diagnostic.

3.4.1 Radial Separation

However, the two species will not necessarily arrange themselves identically in
space [18]. If the two species have different charge to mass ratios, they will require differing
centripetal forces to keep the particles in their expected ExB rotation. This can lead to
radial separation of the plasma components, as in a centrifuge. The heavier species will
move outward and the lighter species will move inward.

We can anticipate the magnitude of this effect by comparing the difference in
the energy scale of the circular motion of the two particles in the unseparated plasma,
1
2 |m1 −m2| r2

pω
2, to their thermal energy scale, kBT . Here ω is, once again, the angular

rotation rate of the plasma.
If the thermal energy is much greater, the plasma will largely remain uniformly

mixed. If not, separation may occur, though the precise nature of this will depend on the
Debye lengths of the separated plasmas.

In the event that full, strong radial separation occurs and the heavier particles
are essentially depopulated within several Debye lengths of the center of the plasma, the
techniques presented here are no longer able to reliably determine the temperature of those
particles. During extraction for measurement, particles are always extracted preferentially
from on the axis, where the space charge is highest and the confining potentials are lowest.
Thus, before our diagnostic will be able to sample the heavier particles on the outer edge of
the plasma, we will first have to remove most of the lighter particles. The high-temperature
diagnostic assumes the plasma space charge is not changed, which is clearly invalidated by
this requirement. The low-temperature diagnostic is also invalidated as it explicitly assumes
that all measured charge escapes from within a few Debye lengths of the axis.

Radial separation is a symptom of the plasma reaching thermal equilibrium. Thus,
in the case of strong separation, we could simply measure the temperature of the lighter
particles to determine the temperature of the heavier particles. Thankfully, our capacity to
do the former is largely intact. We would expect the density profile of the lighter species
to change in a fully separated plasma. However, the high-temperature diagnostic is not
sensitive to the specifics of the density profile and should be unaffected.

The low-temperature diagnostic is sensitive to the density profile, in that it assumes
a constant density out to a radius of several Debye lengths. This criteria is automatically
met if the plasma density is a maximum in the center and the plasma is large enough com-
pared to its Debye length. If the unseparated plasma met this criteria, then the separated
plasma should as well, provided the space charge of the original plasma wasn’t dominated
by the heavier particles. Thus, we should most likely be able to apply the low-temperature
diagnostic with only a minimal correction for the particles’ increased density.

The intermediate regime, where the density profile of the heavier particles is not
a monotonically decreasing function of radius, but is still appreciable within several Debye
lengths of the center of the trap, can be rather complicated.
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Making a temperature measurement, either on the MCP or with the particle de-
tectors, can be rather problematic as the effective gain, determined by the ratio of the
two species in the plasma, changes with radius. Thus, we can no longer necessarily map
observed signal with the number of particles escaped from the well.

This completely breaks the assumption underlying the low-temperature diagnos-
tic. However, the high temperature diagnostic is sensitive to neither the radial density
distribution nor any radial variation in the gain, so long as the gain is not a function of the
blocking potential and the signal remains linearly proportional to the escaped charge, as it
should.

Recall that, in Equation 3.2, we expressed the total number of escaped charges as
an integral over all radii for which charge can escape and be measured:

Ne = 2πlp

∫ R

0
n(r) · erfc(γ) · rdr. (3.12)

However, if we take a step back, we can consider applying the temperature di-
agnostic to charge escaping only from a particular radius, even though we are unable to
measure such charges to the exclusion of others. We can also introduce a term, g(r) rep-
resenting the radially varying average gain of the escaping charge on the MCP due to the
partial radial separation of our particle species.

dNe(r) = 2πrdr lp n(r)g(r)erfc(γ). (3.13)

Then, we can follow an analogous procedure to that used for the derivation of the
high-temperature diagnostic, provided that the none of the density of the plasma, its space
charge, it length, or its effective gain on the MCP are functions of the blocking potential,
Vb.

∂

∂Vb
ln(dNe(r)) =

(
∂

∂Vb
erfc(γ)

)
/erfc(γ)

≈ −2γ
∂γ

∂Vb
= − q

kBT
.

So we see that, as long as the assumptions that originally underpinned the high-
temperature diagnostic hold, the signal on the MCP from charge escaping at any particular
radius should also be an approximate exponential, with a growth rate given by the plasma
temperature. Thus, the high temperature diagnostic should not be compromised by a radi-
ally varying gain caused by radial separation of particle species, so long as such separation
doesn’t contradict any of its underlying assumptions.

There are two cases where the radial variation in gain is less of a concern. If
the signal on the MCP of the unseparated plasma was dominated by the leptons, it will
still be dominated by leptons after partial separation and concerns about varying gain
vanish. Secondly if the scale of the density variations in the separated plasma are much
larger than the Debye length, we can approximate both particles’ density distributions as
constant out to the small radius sampled by the diagnostic. Thus, the effective gain will
not observably vary, allowing us to use the high-temperature diagnostic. Of course, not
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necessarily knowing what that gain is, even if it is constant, will make the low-temperature
diagnostic still somewhat suspect.

If we know the degree of radial separation, we can correct for the radially varying
gain, if necessary. Unfortunately, determining the extent of radial separation is, itself, a
temperature measurement [19]. However, if one were quite confidant in their knowledge of
the other plasma parameters, one could construct a mapping from observed temperature to
expected radial separation and then back to real temperature.

3.4.2 Experimental Complications

So, we can see that, while the low-temperature diagnostic may be compromised,
the high-temperature diagnostic should, theoretically, be as applicable as ever to multiple-
species plasmas, so long as those species produce a linear signal on the MCP. However, in
practice, such a situation may reduce the precision of the measurement.

For example, consider a plasma cold enough that the high-temperature diagnostic
can only be applied to the first hundred charges to escape. If those charges are all electrons,
we would expect, based on numerical simulations, that the temperature measurement will
have a standard deviation of roughly 10%, due entirely to statistical variation in the number
of escaping charges.

However, if one of those charges, on average, is an antiproton, then the total signal
on the MCP from electrons and antiprotons will be comparable. This nearly doubles the
standard deviation of temperature measurements.

If 10 of those charges, on average, are antiprotons, then the antiproton signal
dominates the electron signal on the MCP. In this case, we’re essentially trying to measure
the temperature with only 10 particles in our sample. The two cases of, on average, 90
electrons and 10 antiprotons compared to 10 electrons both result in standard deviations
of roughly 30%.

Thus, the precision of the high-temperature can be compromised once the signal on
the MCP of multiple species of particles with differing gains are comparable, or if whichever
species that produces the greater net signal on the MCP is represented in much lower
numbers. However, in none of these cases does the average temperature measurement
become inconsistent with the true temperature.

3.5 Finite-Length Corrections

3.5.1 Adiabatic Expansion

As stated earlier, the length of the plasma undergoing the diagnostic will neces-
sarily increase during, and almost certainly increase before, the diagnostic process. As the
validity of the temperature diagnostic requires this to occur slowly compared to a bounce
time for the plasma, it will necessarily be an adiabatic process. This means that the second
adiabatic invariant, also known as the bounce invariant J = 1

2

∫
v|| · ds, will be conserved

[20]. Thus, the temperature of the plasma parallel to the magnetic field, which we’re trying
to measure, will be decreased by our measurement.
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Figure 3.2: Expected charge signal for a multi-species plasma: antiprotons and electrons
in a 1:100 mix. The black curve represents one possible charge signal from a temperature
measurement of such a plasma, selected for the early emergence of an antiproton. Note
that the plasma temperature is still measurable, so long as we can measure using at least
the first 1000 emerging particles. The red curve represents the same signal run through a
300Hz - 100kHz bandpass filter, as is the case for data taken on the ALPHA apparatus.
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By simple dimensional analysis, we can see that, when the kinetic energy of the
plasma is changing with its length to preserve the second adiabatic invariant, δE

δl = −2El .
Thus, if we know how the length of the plasma varies over time, we can also determine its
kinetic energy, though we may need to resort to numerical methods.

Unfortunately, it is not necessarily trivial to determine the length of a given plasma
as a function of time. However, we do have, as a starting point, the knowledge of the well
depth when charge first begins to escape from the well and the well depth as a function of
time, as we require this information to properly apply the temperature diagnostic in the
first place.

In order to determine, even roughly, how the length of the plasma changes as the
applied vacuum potentials change, we need to also know the space charge of the plasma,
as will be explained shortly. We can, in theory, determine this based on the measured
temperature of the plasma and the afore-mentioned well depth of first escape. However,
this requires us to recalculate the correction for every measurement, or at least every new
variety of plasma used in a given well. It would be much simpler if we could calculate a
correction based solely on the well depth of first escape and the details of the potential
manipulations, allowing us to develop a single chart applicable to all measurements in a
given well. We can do this, if we consider two limiting cases.

First, we consider an ensemble of particles with a negligible space charge compared
to their kinetic energy; that is, essentially free particles. With no space charge, the bounce
length for a particle in a given well is determined by its kinetic energy. Thus, J becomes
an easily calculated, monotonic function of the particles’ depth in the well.

As an illustrative example, consider the piecewise harmonic well with U = 1
2kz

2,
for |z| ≤ lt and zero elsewhere, where k is a parameter representing the depth of the well
and lt is the length of the well. Of course, this is a manifestly non-physical well, but there
are no physical wells that will suffice for a simple analytical treatment.

By conservation of energy, we have that 1
2mv

2 = 1
2mv

2
0 − 1

2kz
2, where v0 is the

velocity of the particles in the center of the well. Thus, the bounce length for a particle, l,

will be set by 1
2mv

2
0 = 1

2k
(
l
2

)2
. Finally, utilizing the symmetry of the well, we can calculate

J = 2

∫ l/2

0
vdz = 2v0

∫ l/2

0

√
1−

(
2

l

)2

z2dz

=
π

4
v0l =

π

2

√
m

k
v2

0 =

√
π2

mk
Ek.

So, as the well becomes more shallow and k decreases, the kinetic energy, and
thereby the temperature, of the particles will decrease as the square root of k.

At the opposite extreme, we consider a plasma with a low enough temperature
that the space charge of the plasma completely flattens the well and the Debye length of
the plasma is much shorter than the plasma length. In this case, the bounce length of a
particle is equal to the length of the plasma. This makes the adiabatic invariant trivial to
calculate. J = vlp.

Unfortunately, there is the added complication of determining the length of the
plasma. In this low-temperature limit, particles begin to escape when the depth of the well



31

is equal to the space charge of the plasma. If we can determine how the space charge of the
plasma changes as the well changes shape, we can find the length of the plasma.

The simplest possible assumption is that the space charge of the plasma does not
change. This is, of course, only approximately correct, and only for small changes in the
shape of the well. It does, however, make determining the change in the length of the
plasma a simple matter of consulting the applied potentials.

To return to the example of the infinite harmonic well, this approximation would

immediately yield 1
2k
(
lp
2

)2
= Φ. Here, Φ is the change in the on-axis potential of the

plasma from one end to the longitudinal center of the plasma. So, we can easily calculate

J = vlp =

√
2Ek
m

√
8Φ

k

J2 =
16Φ

m

Ek
k
.

So, in this limit, the temperature of the plasma will decrease linearly with k, as
opposed to as

√
k.

Of course, the space charge of the plasma will most likely change. Unfortunately,
there is not a definite way to determine the degree of this change without lengthy and
somewhat difficult calculations. However, if we assume that the radius of the plasma does
not change significantly, then the integral of the space charge over the length of the plasma
will be conserved, as it will be in approximately constant proportion to the total number

of particles.
∫ l/2
−l/2 Φdx = AN .

Applying this constant particle number approximation to the infinite harmonic

well yields AN = 4
3k
(
l
2

)3
. Thus, knowing the length of the plasma when it escapes the

well, we can find its length at any earlier time. Applying this to the conservation of the
adiabatic invariant yields

J2 = v2l2 =
2

m

(
6AN

k

)2/3

Ek.

Thus, in this limit, the temperature of the plasma decreases as k2/3, intermediate between
the limit of the free particles and the assumption of an unchanging plasma space charge.

Now, it remains to relate the change in kinetic energy parallel to the magnetic field
to a change in the plasma temperature parallel to the magnetic field. The obvious answer
is that they’re linearly related by a factor of half Boltzmann’s constant. However, we have
to consider coupling to the transverse temperature of the plasma. It is, as stated above,
an assumption of the temperature diagnostic that the diagnostic occurs over a time short
compared to a collision time, but this restriction doesn’t necessarily apply to manipulations
made before the diagnostic, which this correction is also intended to address. Regardless,
even in the event of full equilibrium between the longitudinal and transverse temperature,
the only change is that 2/3 of the energy reduction caused by the adiabatic expansion cools
the transverse temperature instead. Of course, this consideration is irrelevant in the case of
the single-particle limit, as collisions should be sufficiently suppressed in said limit to make
equilibration much slower and, therefore, negligible.
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Using these various models and a set of potentials for a given measurement, it is
possible to construct a set of simple curves giving the expected correction to the measured
temperature, based on the voltage at which charge begins to escape the well.

3.5.2 Change in Space Charge

As we just discussed, the space charge of the plasma will necessarily decrease
as the length of the well increases during and preceding the diagnostic. However, when
deriving Equation 3.4, we assumed that the derivative of the space charge with respect to
the blocking voltage was zero. If we remove this assumption, Equation 3.4 becomes

∂

∂Vb
ln(Ne) = − q

kBT

(
1− ∂Φ

∂Vb

)
. (3.14)

Thus, this effect will reduce the right-hand side of the equation and cause the
temperature to appear higher than it actually is.

For a given potential configuration, it is possible to calculate ∂Φ
∂Vb

as a function of

Φ and Vb. For example, in the case of our infinite harmonic well, ∂Φ
∂Vb

= 1
3

Φ
Vb

. In general,
the factor of 1/3 will be replaced with a numeric function, a(Vb). Unfortunately, even
after calculating the correction for a particular well, one needs to know both the blocking
potential and the space charge to determine the shift in temperature; unless, in analogy with
the correction due to adiabatic expansion, we make assumptions regarding the relationship
between the space charge and blocking potential.

In the high temperature, single-particle limit, the space charge of the plasma is
negligible. Thus, any change in the space charge is also negligible and this correction
vanishes.

In the limit of the zero-temperature plasma, no charge escapes from the well
until the blocking potential is equal to the space charge of the plasma. In this case, the
relationship between the measured, Tm, and real, Tf , temperatures is Tf = Tm (1− a(Vb)).

Unfortunately, these bounds are not terribly constraining, as a(Vb) is generally on
the order of 1/2, which corresponds to a 100% difference between the two limiting cases.

This correction, in combination with the previous correction for adiabatic expan-
sion, can be used to construct curves giving the expected error in a temperature measure-
ment as a function of when charge begins to escape the well, during the extraction process.
An example, for our perfectly harmonic well, is depicted in Figure X. While the example
well is manifestly non-physical, the result is generally representative of curves constructed
for physically realizable wells used in actual experiments. Even if one doubts the veracity of
any of the possible models represented, the true behavior of the plasma is almost certainly
intermediate between them, with the corresponding correction lying somewhere in the range
depicted.

3.6 Comparisons to Simulation

Of course, a diagnostic is only as good as the measurements it produces. So,
we decided to compare the results of the diagnostic to the results produced by numerical
simulations [21].
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Figure 3.3: Correction curve for hypothetical temperature measurements: similar curves
can be constructed numerically for real temperature measurements. This allows us to
estimate the error in our measurements based on the plasmas measured temperature and
space charge. For plasmas far from any of these limiting cases or of particular importance
to us, we can instead resort to particle-in-cell simulations specific to certain sets of plasma
parameters.
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The simulations were done with a two-dimensional particle-in-cell code with the
assumption of global thermal equilibrium. Additional simulations were done for the case of
thermal equilibrium only along field lines, but the results were qualitatively similar.

In the simulation, a plasma with a specified number of particles, density, and
temperature would be placed in a specified well. Then, the well would undergo the same
alterations as during the temperature diagnostic. The number of charges escaping from the
well were recorded and the temperature diagnostic was applied to them, exactly as for real
data.

The well in question, for the case being considered here, was the well in which
positrons were held prior to mixing. This well consisted on only a single electrode (approx-
imately 1 cm long). Thus, we would expect errors due to the finite length of the plasma to,
potentially, be quite important.

The results are shown in Figure 3.3. We present the percentage error in the
measured temperature both before and after correction for the finite length errors discussed
in the previous section.

We note that, for this particular case, the error due to the changing space charge
of the plasma is generally more significant than that due to adiabatic cooling, resulting in
the measured temperature almost always being higher than the original temperature of the
plasma. The effect becomes more pronounced as the plasma becomes colder and denser, or
as the potential energy of the plasma becomes larger, in comparison to its thermal energy.
Fortunately, by applying the corrections described in the previous section, we are able to
determine the temperature of these simulated plasmas to within 20% in most cases, implying
that we can do the same for the real plasmas we wish to diagnose.
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Figure 3.4: Expected errors and corrections for temperature diagnostic: all data points
represent the results of particle-in-cell simulations of a single, particular temperature mea-
surement while the initial equilibrium temperature of the plasma is varied, either with or
without the finite-length corrections discussed.
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Chapter 4

Diffusion and Heating

Having established the applicability and principles of our temperature diagnostic,
we now establish a model for one particular effect we used the diagnostic to observe and
characterize.

We will determine the heating of an expanding non-neutral plasma. In particular,
we will focus on expansion due to diffusion, in several different regimes of applicability.

Then, we will develop a model for the enhancement to diffusion caused by immers-
ing our plasmas in a multipole field and combine this with the previous work to attempt to
predict the temperature of a plasma undergoing such diffusion.

4.1 Self-heating of a Diffusing Plasma

We assume that a plasma will diffuse according to the classical diffusion equation:

∂n

∂t
= ∇ • (D∇n). (4.1)

where n is the density of the plasma and D, to be determined, is the particle radial diffusion
coefficient.

If the plasma is azimuthally and longitudinally symmetric and the diffusion coeffi-
cient has a simple power-dependence on the radial coordinate: D = D0r

p, then the diffusion
equation simplifies to

∂n

∂t
=
D(r)

r

(
(p+ 1)

∂n

∂r
+ r

∂2n

∂r2

)
. (4.2)

The plasma has an electrostatic self-energy associated with its electric Field, E(r,
t):

U(t) =
ε0
2

∫
V
E2dV . (4.3)

If we assume the plasma is azimuthally and longitudinally symmetric, then we
need only concern ourselves with the electrostatic self-energy per unit length. Under this
approximation, we can write the electric field of the plasma:

E(r, t) =
q

2πε0

1

r

∫ r

0
2πxn(x)dx. (4.4)
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As the plasma diffuses, the electrostatic self-energy will decrease, as the electric
field does positive work on the charges moving outward. This work will increase the kinetic
energy of the particles. Assuming that collisions among the particles occur at a rate signif-
icantly faster than the diffusion, this will result in an increase in the plasma temperature.

The heat capacity of the plasma per unit length should be merely the heat capacity
of a single charge, 3

2kB times the number of charges per unit length, λ .

∂T

∂t
=

2

3kBλ

∂U

∂t
(4.5)

=
ε0

3kBλ

∫
V

∂E2

∂t
dV

=
2ε0

3kBλ

∫
V
E
∂E

∂t
dV

=
4πq2

3kBλε0

∫ (
1

s

∫ s

0
nrdr

)(
1

s

∫ s

0

∂n

∂t
rdr

)
sds. (4.6)

Thus, in theory, if we know the diffusion coefficient and the plasma distribution at
any given time, we can determine the instantaneous diffusion based heating. If the diffusion
coefficient is time-invariant, then we can also, theoretically, determine this heating at any
later time.

4.2 Solutions to the Diffusion Equation

In practice, knowing both the diffusion coefficient and the initial plasma distribu-
tion is not sufficient to easily determine the plasma distribution at any later time, especially
if the diffusion coefficient itself varies in time or space. Thus, we consider a number of pos-
sible approximations to simplify the task.

4.2.1 Free Uniform Diffusion

First, we want to select as simple an initial plasma distribution as possible. Any
distribution will be described in terms of its linear charge density λ. The simplest possible
distributions will depend on only one time-varying parameter.

The first such distribution to come to mind is the flat-topped plasma distribution,
with uniform density within some radius. While this distribution is, potentially, a reasonable
approximation to a physical distribution, it also results in non-continuous derivatives. Thus,
it is rather problematic to use when solving a differential equation.

One distribution that retains the desired compactness of the flat-topped distribu-
tion with continuous derivatives and is still described by only one spatial parameter is the
Gaussian:

n(r) =
λ

πr2
p

e−(r/rp)2 . (4.7)

Of course, the same could be said for analogous functions involving other powers
of the radius than two. However, the Gaussian has the useful property of being a potential
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solution to our diffusion equation. Plugging it in to Equation 4.2 yields

n
∂rp
∂t

2

rp

(
r2

r2
p

− 1

)
= nD

4

r2
p

(
r2

r2
p

− 1− p

2

)
.

Unfortunately, this only has a solution when p=0; that is, when the diffusion
coefficient is spatially uniform. In that case, the result further simplifies to give us

D =
rp
2

∂rp
∂t

(4.8)

∂n

∂t
= nD

4

r2
p

(
r2

r2
p

− 1

)
.

If we consider this result, we see that it predicts that the density will decrease at
radii less than rp, the root mean square radius of the distribution, and increase at larger
radii. This is entirely in keeping with the idea of a spatially concentrated distribution
diffusing to larger radii.

If we know how the diffusion coefficient varies with time and the size of the plasma,
we can use Equation 4.8 to determine the size of the plasma as a function of time. For
example, if the diffusion coefficient varies with neither parameter, the size of the plasma
will increase as the square root of elapsed time, as one might expect for a diffusive process.

Now, we can directly evaluate the heating of the plasma over time:

∂T

∂t
=

16λq2

3πkBε0

D

r6
p

∫
1

s

(∫ s

0
re
− r

2

r2p dr

)(∫ s

0
r

(
r2

r2
p

− 1

)
e
− r

2

r2p dr

)
ds

=
4λq2

3πkBε0

D

r2
p

∫
1

s

(
s2

r2
p

e
− s

2

r2p

)(
1− e

− s
2

r2p

)
ds

=
λq2

3πkBε0

D

r2
p

. (4.9)

One may wish to note that λ
r2p

is proportional to the average density of the plasma. Thus,

the rate of change of the plasma’s thermal energy is directly proportional to the product of
the diffusion coefficient and the plasma’s average density.

There are several important caveats to this particular result. First off, it is invalid
if the diffusion coefficient varies spatially. Secondly, the integrals done to determine the
heating were done over all of space. The Gaussian density distribution also results in a non-
zero density everywhere in space. Our plasmas are held inside conducting cylinders. Thus,
neither the plasma nor its electric field extends beyond some certain radius. However, if the
plasma is much smaller than this radius, this result should still be approximately correct.

4.2.2 Bounded Uniform Diffusion

Luckily, we also know of solutions to the diffusion equation, with spatially uniform
diffusion coefficient, for the, more physical, bounded case. The eigenfunctions of the diffu-
sion equation, with our actual boundary conditions, are the zeroth-order Bessel functions
of the first kind.
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It would be convenient if we could approximate our initial plasma distribution as
one of these functions. However, all but one of these functions are negative for certain
ranges of radii. A negative density is certainly unphysical. The one remaining Bessel
function depicts a plasma roughly as large as its confining cylinder and results in large
quantities of plasma being lost directly to the wall. While this may be an interesting case
to consider in other applications, we are more likely to deal with plasmas that are small
compared to their confining cylinders. Thus, we need more generality than a single Bessel
functions.

Bessel functions form a complete basis with which we can expand any plasma
distribution. Thus, we can express an arbitrary radial distribution as a linear combination
of Bessel functions in what is known as a Bessel-Fourier series.

n(r, t) =
∑
j

Aβje
−β2

jDt/R
2

J0

(
βjr

R

)
,

where Jn(x) is the nth-order Bessel function of the first kind, R is the confining radius
(where the plasma density is necessarily zero), and βj represents the jth zero of J0(x). The
coefficients are given by

Aβj =
2

R2J2
1 (βj)

∫ R

0
rn(r)J0

(
βjr

R

)
dr.

With this formulation, we can evaluate the heating of the plasma.

1

s

∫ s

0
nrdr =

∑
j

Aβje
−β2

jDt/R
2
∫ s

0
J0

(
βjr

R

)
rdr

=
∑
j

Aβje
−β2

jDt/R
2

(
R

βj

)
J1

(
βjs

R

)
,

by a convenient property of the Bessel functions. Similarly,

1

s

∫ s

0

∂n

∂t
rdr =

∑
j

Aβj

(
−β2

jD

R2

)
e−β

2
jDt/R

2

(
R

βj

)
J1

(
βjs

R

)
.

Combining these,

∂T

∂t
= − 4πq2

3kBλε0

∑
i

∑
j

AβiAβjD

(
βj
βi

)
e−(β2

j+β2
i )Dt/R2

∫ R

0
J1

(
βis

R

)
J1

(
βjs

R

)
sds.

Luckily, Bessel functions are orthogonal, and the integral in the sum is zero unless
βi = βj .

Thus, we reach our final expression for the change in temperature, without select-
ing a particular density distribution:

∂T

∂t
=

2πq2

3kBλε0

∑
j

A2
βjR

2De−2β2
jDt/R

2

J2
1 (βj).
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Now consider the simplest physically-possible case, where the Bessel-Fourier ex-
pansion consists of a single term; the first. In this case, Aβ1 = n(0) ≈ λ/πr2

p, and we
have

∂T

∂t
=

2πq2

3kBλε0

(
λ

πr2
p

)2

R2DJ2
1 (β1)e−2β2

1Dt/R
2

=
q2

6πkBε0
D
λR2

r4
p

e−2β2
1Dt/R

2
.

Note that, in this case, the plasma radius does not vary in time and is a fixed
fraction of R. Thus, the time-independent portion of this result actually varies as 1/r2

p.
However, as stated earlier, we are particularly interested in plasma density dis-

tributions with a radial scale rp << R. The Bessel functions we’re using to expand the
density, J0(βr), have a global maximum at r = 0 and their first zero at r = β1/β. Thus,
the largest contribution to their integral comes from within this radius and we expect the
Bessel-Fourier expansion to be dominated by the terms near β = β1R

rp
.

For the case of large argument, one can asymptotically expand the Bessel functions.
Specifically,

J0(r >> β1) ≈
√

2

πr
cos

(
r − π

4

)
J1(r >> β1) ≈

√
2

πr
sin

(
r − π

4

)
.

Since βj is defined as a zero of J0(r), we can see that

J2
1 (βj >> β1) ≈ 2

πβj
.

While this expression may have been derived for large j, it is accurate to within 2% for all
j.

Unfortunately, for most reasonably physical density distributions, the coefficients
of the Bessel-Fourier expansion must be calculated numerically. One exception is the flat-
topped plasma distribution, where n(r) = λ

πa2
for r ≤ a and is zero elsewhere. The

flat-topped distribution, unlike the Bessel functions, is not an eigenstate of the diffusion
equation. Thus, the plasma distribution can only be exactly flat-topped at a single moment
in time. However, we will assume that the plasma stays approximately flat-topped and
place all time-dependence of the density distribution in its size, a.

In this case,

Aβj =
2

R2J2
1 (βj)

(
λ

πa2

)∫ a

0
rJ0

(
βjr

R

)
dr

=
2

R2J2
1 (βj)

(
λ

πa2

)(
aR

βj

)
J1

(
βja

R

)
≈ λ

aR
J1

(
βja

R

)
.
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Knowing the coefficients, we can write

∂T

∂t
≈ 4q2

3kBε0

λ

a2
D
∑
j

e−2β2
jDt/R

2 1

βj
J2

1

(
βja

R

)
.

Note that we’ve now removed all dimensionful parameters from inside the sum
over j.

The zeroes of J0(r) are approximately evenly spaced by π. As a/R becomes smaller,
the number of terms of this sum with a non-negligible contribution to the total increases.
If the number of significant terms is large enough, we can approximate the sum with an
integral, provided the terms vary slowly, as they do. In practice, if a/R ≤ 1/10, as is the
case for most of our plasmas, this approximation is good to within a few percent.

∑
j

1

βj
J2

1

(
βja

R

)
e−2β2

jDt/R
2

≈
∫ ∞

0

1

πx
e−2π2x2Dt/R2

J2
1

(
πxa

R

)
dx

=
1

2π

[
1− e−a2/4Dt

(
I0

(
a2

4Dt

)
+ I1

(
a2

4Dt

))]

≡ 1

2π

(
1− S

(
a2

4Dt

))
.

Here, In(r) is the nth order modified Bessel function of the first kind. They are
also known as the hyperbolic Bessel functions, in analogy with the hyperbolic trigonometric
functions. S(x) is merely used as a convenient shorthand.

While the function itself is relatively complicated, it can be asymptotically ex-
panded for both large and small arguments:

S

(
r2
p0

2Dt
>> 1

)
≈

√
4Dt

r2
p0

(
1− Dt

4r2
p0

)

S

(
r2
p0

2Dt
<< 1

)
≈ 1−

r2
p0

4Dt
.

So, we can see that the heating of the plasma is an always decreasing function of
time, decreasing like 1−

√
t at early times and like 1/t at late times.

We wish to define the plasma radius as the root mean square radius of the plasma
distribution. Thus, a =

√
2rp0, where rp0 is the RMS plasma radius at t=0. Plugging all of

this together yields
∂T

∂t
≈ q2

3πkBε0

λ

r2
p0

D

(
1− S

(
r2
p0

2Dt

))
, (4.10)

a functional form that should be correct up to a numeric correction for any sufficiently
small, physical plasma distribution.

At t=0, this result may look identical to the result for the Gaussian distribution
undergoing free diffusion. However, there is the important distinction that, in the prior
result, rp is a function of time, while rp0 is not. Thus, the two expressions only agree at
t=0.
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4.2.3 Time Dependence

Unfortunately, our description for bounded diffusion does not describe the radius
of the plasma as a function of time, unlike the unbounded result. It will be useful to
determine what the actual time dependence is.

We want to describe the size of the plasma with its root mean square radius:

r2
p =

(∫ R

0
2πr3n(r)dr

)
/

(∫ R

0
2πrn(r)dr

)
. (4.11)

Of course, the normalizing integral should simply give λ. However, there will be
some time dependence corresponding to diffusive loss of particles to the walls. While we are
not currently interested in this effect, it is important to make sure we can properly neglect
its effect on the size of the plasma.

If we, once again, assume a flat-topped distribution, small compared to the elec-
trode radius, and apply our previous results, we can evaluate the integrals:

∫ R

0
2πr3n(r)dr ≈ 2πλ

aR

∫ R

0
r3
∑
j

J1

(
βja

R

)
J0

(
βjr

R

)
e−β

2
jDt/R

2

dr

=
2πλ

aR

∑
βj

J1

(
βja

R

)
e−β

2
jDt/R

2
∫ R

0
r3J0

(
βjr

R

)
dr,

and similarly for the normalizing integral.
Doing the spatial integrals∫ R

0
r3J0

(
βjr

R

)
dr =

R4

β2
j

(2J2(βj)− βjJ3(βj)) =
R4

β3
j

J1(βj)
(
β2
j − 4

)
∫ R

0
rJ0

(
βjr

R

)
dr =

R2

βj
J1(β),

where we’ve used the property of the Bessel functions that Jn(x) = x
2n(Jn−1(x) + Jn+1(x))

to rewrite the result of the first integral.
This leaves us with

r2
p ≈ R2

1−


∑
j

4J1(βj)

β3
j

J1

(
βja
R

)
e−β

2
jDt/R

2

∑
j
J1(βj)
βj

J1

(
βja
R

)
e−β

2
jDt/R

2


 .

Unfortunately, J1(βj) reverses sign at each value of j, making it a quickly varying
function. This prevents us from being able to approximate these sums as integrals. Fortu-
nately, both sums converge relatively swiftly, allowing us to find a numeric approximation.

If we do this, we find that the room mean square radius of the plasma starts out at
a2/2, as we’d expect and, so long as the plasma remains small compared to the electrodes,
this radius increases as roughly the square root of time elapsed. Once, the plasma becomes
large, its rate of expansion slows as the radius asymptotes to ≈ 0.6 R, the constant value
corresponding to only the lowest order Bessel function that the plasma distribution will
approach, as particles are lost to the wall.
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4.2.4 Numeric Solutions

Unfortunately, it is very difficult to generalize the preceding analysis for the case
of a spatially varying diffusion coefficient. However, if we know the density distribution and
diffusion coefficient at any particular time, we can numerically determine the instantaneous
heating rate.

Consider a density distribution of the form n(r) = Ae
−( r

rp
)ℵ

, normalized to the
linear particle density, λ, where rp is the room mean square plasma radius and ℵ is a
parameter describing the shape of the distribution: two for a Gaussian, higher for more
”flat-topped” distributions, and less (but still greater than one) for broader ones.

We are interested in diffusion caused by the addition of a magnetic multipole of
order α to the standard Penning trap. (α = 2 for a quadrupole, 4 for a octupole, and so
on). Thus, for reasons that will be illustrated later, we expect the diffusion coefficient to
vary as r2α−2.

Using these two assumptions, we can numerically evaluate the integral in Equation
4.6. The result is D(rp)

λ2

r2p
times a numerical factor that increases weakly with α and ℵ and

does not depend on the radius of the confining electrodes (beyond which the electric field
due to the plasma is necessarily zero) so long as the plasma extent is small compared to the
electrodes. For example, for the case of a Gaussian distribution in an octupole, the numerical
factor is .038, in SI units. We note that this is 50% larger than the equivalent result in
Equation 4.9. Thus, for the sake of clarity, we will simply incorporate this correction with
a direct modification of that result.

4.3 Finite Length Correction to Heating

The above calculations assume a plasma of infinite length. This is, obviously, not
physical and we should consider how this deviation from our model might affect the results.

The simplest approach is to directly compare the two limiting cases: an infinite
cylinder and a sphere.

For a uniform sphere of radius a containing N elementary charges, the total elec-
trostatic energy is given by

Us =
3

5

q2

4πε0

N2

a
.

For a uniform cylinder of radius a and length l (which we will take as infinite)
containing λ elementary charges per unit length, contained within an infinite cylindrical
conducting wall of radius R (to prevent the divergence of the electrostatic energy), the total
electrostatic energy is given by

Uc =
q2

4πε0
λ2l

(
1

4
+ ln

(
R

a

))
.

A direct comparison of these two is not terribly illuminating, even if we ignore the
fact that our two charge distributions exist in different environments. However, we are only
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actually interested in how the electrostatic energy of these distributions changes as they
expand.

If we take the derivatives of these expressions with respect to radius and, addi-
tionally, rephrase the expression for the sphere to include λ = N/2a, we get

δUs
δa

= −12

5

q2λ2

4πε0
δUc
δa

= −q
2λ2

4πε0

l

a
δUc
δa

=
5

12

l

a

δUs
δa

.

From this, it is tempting to conclude that the rate of change of electrostatic energy
for a finite cylinder will be equal to that of a sphere, multiplied by the cylinders aspect ratio
and a numeric factor between 1 and 5/12.

Unfortunately, it is not possible to analytically calculate a similar result for an
arbitrary finite cylinder. However, numeric calculations fully support this result. For ex-
ample, a uniform cylinder with l/a = 20 matches our expression with a numeric factor of
3/4.

Since we’re concerned with the electrostatic energy change per unit length of the
plasma, this suggests that the only necessary correction to our calculations assuming an
infinite cylinder is, roughly, a factor of two increase in heating.

4.4 Assumptions for Estimating the Diffusion Coefficient

We are interested in the case of diffusion resulting from the broken azimuthal
symmetry in a combined solenoidal and multipole field of the form

~B = B0ẑ +B1

(
r

R

)α−1

(cos(αθ)θ̂ + sin(αθ)r̂), (4.12)

where R is the radius of the multipole, B1 is the magnetic field of the multipole at this
radius, and α is still the above-mentioned order of the multipole.

It has been previously demonstrated that such fields can enhance diffusion of a
non-neutral plasma [22]. The following derivation is based, primarily, on work done in [22].
While the process of the derivation is not identical, these heuristic results for the diffusion
coefficients differ only by a multiplicative factor of approximately 1.5. Both calculations
include only specific low-order drifts and exclude turbulent transport.

4.4.1 Thermal Motion and ExB Drifts

In the limit of a strongly magnetized plasma, large-scale particle motion will consist
of primarily two components: a thermal velocity, vt, along the magnetic field lines and an
ExB drift perpendicular to the magnetic field.

~vd =
~E × ~B

B2
. (4.13)
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The component of the thermal velocity along a given coordinate should be pro-
portional to the strength of the magnetic field along that same coordinate. For example,
we would expect that

vtr
vtz

=
B1

B0

(
r

R

)α−1

sin(αθ). (4.14)

If we make the additional assumption that ~E = E(r)r̂, then we can write down
the velocity of a particle, under the drift equation approximation:

vz =
±vt√

1 + (B1
B0

)2( rR)2α−2
+
B1E(r)( rR)α−1 cos(αθ)

B2
0 +B2

1( rR)2α−2

vθ =
±vt B1

B0
( rR)α−1 cos(αθ)√

1 + (B1
B0

)2( rR)2α−2
− B0E(r)

B2
0 +B2

1( rR)2α−2
(4.15)

vr =
±vt B1

B0
( rR)α−1 sin(αθ)√

1 + (B1
B0

)2( rR)2α−2
.

We can drastically simplify the system if we also assume that the magnetic field
of the multipole is small compared to that of the solenoid at radii with significant plasma
density and we neglect all but the lowest order terms in β/B0 (r/R)α−1.

vz = ±vt

vθ = −E(r)

B0
(4.16)

vr = ±vt
B1

B0

(
r

R

)α−1

sin(αθ).

We should stop to consider what effects we’ve lost with this assumption. The most

pervasive is equivalent to assuming that
∣∣∣ ~B∣∣∣ = B0. This results in a fractional error present

in every term, to either first or second order. As such, it is unlikely to qualitatively alter
behavior.

The second effect is the azimuthally dependent drift in the z-direction. We note
that this is equivalent to the ExB drift of the unperturbed plasma multiplied by our small
perturbation parameter and an azimuthal dependence. Thus, this drift will always be much
smaller than the unperturbed ExB drift, and the former will cause a comparatively rapid
variation in θ that was average the latter out to zero.

The final effect is the azimuthally dependent azimuthal velocity. This is merely
a thermal velocity along magnetic field lines. While this velocity is necessarily small due
to the smallness of the perturbation, it is not necessarily negligible when compared to the
unperturbed ExB drift. In the limit of a high-temperature, low-density plasma, the thermal
velocity can be larger than the ExB drift by a factor in excess of the inverse of our smallness
parameter, making this the dominant source of azimuthal motion.

In the limit where we neglect the ExB drift, particles will simply stream back and
forth along field lines. These field lines converge toward angles given by π

2α + 2πN
α , for
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integer N. If we also look at the radial velocity of the particles, we see that these angles
also correspond to maximum outward radial velocity. This will change the equilibrium
distribution of the plasma from a rough cylinder to a twisted flute. Unfortunately, in this
limit, particles simply stream back and forth along their single field line, resulting in no net
transport.

In the opposite limit, the ExB drift is large compared to the this perturbing angular
velocity. This, the perturbation will once again be averaged out over angle and have no
net effect. As we don’t anticipate that this perturbative angular velocity will significantly
affect the radial transport in either limit, we neglect it.

4.4.2 Other Drifts

We have, so far, neglected two other potential sources of motion across field lines.
These drifts arise due to the spatial inhomogeneity of the perturbed magnetic field.

The magnitude of the multipole field increases with radius. This leads to a grad-B
drift.

v∇B = −1

2
v⊥rL

~B ×∇ |B|
B2

(4.17)

= −1

2
v⊥rL

1

B2
~B ×

(
α− 1

|B|
B2

1

(
r

R

)2(α−1) r̂

r

)
,

where v⊥ is the velocity of the particle perpendicular to the field lines, rL is the Larmor
radius, and the direction of the drift reverses for positively charged particles. As we’re
assuming the strongly-magnetized limit, the Larmor radius must be small compared to
any other relevant scale-length, and the perpendicular velocity should be dominated by the
cyclotron velocity that, if we assume thermal equilibrium, should be equal to

√
2vt.

We can see that the magnitude of this drift is necessarily going to be small due
to the factors of rL and our perturbation parameter squared. While this drift may become
large compared to the ExB drift, thanks to the factor of the thermal velocity, it will always
be quite small compared to the already existing thermal motions of the plasma.

There is also a curvature drift associated with the changing direction of the mag-
netic field.

vR =
mv2
||

qB2

~Rc × ~B

R2
c

. (4.18)

~Rc is the radius of curvature of the magnetic field and v|| is the velocity parallel
to the field lines, equivalent to vt.

In the usual limit of a comparatively weak multipole field, the radius of curvature
of the field is given by,

(
B1

B0

(
r

R

)α−1
)2

~Rc ≈
r

α− 1

(
r̂ − tan(αθ)θ̂

)
.
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This gives us, to lowest order in the relative multipole strength,

vR ≈ −
mv2

t

qB0
(α− 1)

(
B1

B0

(
r

R

)α−1
)2

cos2(αθ)

r

(
tan(αθ)r̂ + θ̂

)
.

As in the case of the gradient drift, we can see that this drift will be small compared
to the thermal velocities along field lines by an additional factor of the magnetic perturbation
and the ratio of the Larmor radius to the size of the plasma. Thus, we neglect these drifts,
as well.

4.5 Estimating the Diffusive Velocity

We are interested in determining the average radial speed of particles at a given
location in the plasma. We will eventually have to consider the thermal distribution of the
plasma, but we will start by considering only particles with a given thermal velocity.

The radial velocity depends on θ, which varies with time. If we define E(r)
rB0

= ω,
we have

vr = ±vt
B1

B0

(
r

R

)α−1

sin(αθ0 − αωt). (4.19)

In general, given our assumptions so far, ω is a function of r. However, since the
radial velocity itself is first order in the magnetic field perturbation, which we have already
assumed to be small, we will assume that the change in r, and the resulting change in ω, is
small enough to neglect over a single bounce period. One might note that for the case of a
uniform cylinder of plasma, ω is, in fact, constant with radius.

Our formula for the radial velocity has no explicit z-dependence. However, the
sign of this velocity depends on the direction of travel along a field line, which necessarily
reverses itself twice over a bounce time. The velocity also has a periodic dependence on
time. Thus, even if a particle has a large radial velocity, it is highly likely that the particle
will return to its original radius, resulting in no average radial displacement, unless we
consider collisions.

We are interested in the regime where collisions are the primary mechanism by
which this diffusion operates. The velocity of a particle before and after a collision are
not significantly correlated, aside from the location of the collision. Therefore, collisional
particles that would otherwise move periodically can diffuse outward or inward.

Thus, we want to average over the average time between collisions, τc. We will
start with the highly collisional case where the collision time is short enough compared to a
bounce time that we can neglect the reversal of direction during a bounce. If we also absorb
temporarily irrelevant constants into a new constant, A, we proceed with our integral:

∂r

∂t
= Arα−1 sinα(θ0 − ωt)∫ r1

r0
r1−αdr = A

∫ τc

0
sinα(θ0 − ωt)dt[

1

2− α
r2−α

]r1
r0

=
A

αω
[cosα(θ0 − ωt)]τc0 .
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Of course, for the special case of a quadrupole field, α = 2, the integral over space
results in a logarithm instead. Suffice it to say, carrying out the equivalent steps for that
special case eventually reaches the same result.

1

2− α
(r2−α

1 − r2−α
0 ) =

A

αω
(cosα(θ0 − ωτc)− cosαθ0). (4.20)

In the limit where ∆r ≡ r1 − r0 is small we can make the approximation that
rn1 − rn0 = nrn−1

0 (r1 − r0). This, along with some basic trigonometric identities yields

∆r =
Arα−1

0

αω

[√
2− 2 cos(αωτc) cos(αθ0 + αγ)

]
,

where γ is a complicated function of the quantity αωτc. Note that this result, and therefore
all following work, is once again consistent with the α = 2 case.

Now, we are prepared to average over θ0. Naively doing so immediately yields
zero, as the average of Cosine is zero. However, this is because the naive average cancels
out particles traveling outward with particles traveling inward, even though both directions
of travel contribute positively to diffusion. After all, for every particle traveling along a
magnetic field line, there is an equal probability of a particle traveling in the opposite
direction along that same field line. What we need is some measure of the average of the
absolute value of the displacement. We’ll use the root mean square (RMS) displacement.
For a pure Sine or Cosine curve, this is simply 1/

√
2.

〈
∆r2

〉1/2

θ
=

Arα−1
0√

2αω

√
2− 2 cos(αωτc)

=
vt√
2αω

B1

B0

(
r

R

)α−1√
2− 2 cos(αωτc). (4.21)

In the opposite limit, the collision time is long enough compared to the bounce
time that we can treat the path between collisions as an integer number of full traversals. In
that case, we can write down an expression for the radial displacement over each traversal
in the from of Equation 4.23, with τc replaced by τ , the bounce time, and θ0 adjusted to
match the previous traversal. Adding all of these up will give us a rough value for the
diffusive radial step over a single collision time.

Unfortunately, this limit becomes much more difficult when we want to average
over the original θ0, as we need to reduce the entire expression to a single trigonometric
function to be able to easily calculate its RMS value. However, we can make this reduction
for cases where τc = 2nτ , for whole number n. After averaging over θ0, we are left with

〈
∆r2

〉1/2

θ
=
Arα−1

0√
2αω

√
2− 2 cos(αωτ)

√
2− 2 cos(αωτ)

n−1∏
i=1

√
2 + 2 cos(2iαωτ). (4.22)

Of course, this functional form is not terribly enlightening. We can see that the
terms inside the square roots are periodic, with a maximum of 2n+1 = 2τc

τ whenever αωτ =



49

Nπ, for odd N, that becomes ever narrower as n increases. Though, if n becomes too large,
the radial excursion between collisions may become large, and our derivation is no longer
valid.

If we say that τ = l/vt, where l is the length of the plasma, then our condition for
a maximum in the radial transport becomes αωl

vt
= Nπ. This makes sense when we consider

that ωl
2vt

is the angular rotation made by a particle on a single pass of the plasma and that
π
2α is the rotation in the multipole field lines along the same pass. Thus, particles that
match these two numbers will be on a trajectory that moves always inward or outward (or
not at all for specific initial conditions).

4.6 Estimating the Diffusion Coefficient: Collisional case

A diffusion coefficient must be of the form D = l2mfp/τc, where lmfp is the mag-
nitude of the diffusive steps and τc is the time between them. (It may, of course, also be
equivalently written in terms of the diffusive velocity.)

We must decide how to turn our diffusive step size at a single thermal velocity
into a general diffusion coefficient. Ideally, we would square Equation 4.23, divide by the
collision time, and integrate over the thermal distribution to determine the true average.
This becomes extremely difficult when we consider that the average collision time for a
particle certainly depends on its thermal velocity, but is trivial if we neglect this effect.

We get

D =

∫ inf

0

1

α2ω2τc

(
B1

B0

(
r

R

)α−1
)2

(1− cos(αωτc))

√
m

2πkBT
v2
t e
−mv2t
2kBT dvt

=
kBT

2mα2ω2τc

(
B1

B0

(
r

R

)α−1
)2

(1− cos(αωτc)) . (4.23)

What does this mean? We recall that this expression is for the case where the
collision time is much less than the bounce time. Thus, particles will typically travel a
very short distance along the length of the plasma and their radial displacement will largely
be governed by their azimuthal displacement, ωτc. If we look at our expression, we see
that the diffusion coefficient is zero whenever αωτc = Nπ, for even N. This corresponds to
traversing a full period of the azimuthal variation in the magnetic field, which we would
expect to result in zero net displacement. Between these minima, at roughly odd N, are
local maxima in the diffusion coefficient, which are damped as 1/N .

Of course, reaching any of these local maxima requires that 1/ω be comparable to
or smaller than τc. If the plasma is in the ”stiff” regime, where ω is less than the bounce
frequency, in addition to the highly collisional regime we’re currently considering, then 1/ω
will always be much larger than τc, and the plasma will be far below the first resonance in
Equation 4.25. In that case, we can expand around αωτc = 0 and get

D ≈ kBTτc
4m

(
B1

B0

(
r

R

)α−1
)2

.
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However, since this regime was not experimentally realizable for us, this presents
mainly a theoretical curiosity.

4.7 Estimating the Diffusion Coefficient: Low-collision case

In the case of a plasma with a relatively low collision rate, our expression for the
size of the diffusive steps is more complicated. Thus, the task of integrating this expression
over the thermal distribution becomes impossible, analytically.

However, we recall that the width of the resonance at αωl
vt

= Nπ becomes smaller
and smaller as the collision time becomes relatively larger than the bounce time. So we
make the simplification of only considering the particles at or near resonance. Doing this,
we no longer need to integrate over the thermal distribution. Instead, we merely multiply
by the distribution evaluated at the resonance and an appropriate width of the resonance.

But what is the width of the resonance? We consider the trigonometric terms in
Equation 4.24, squared for inclusion in the diffusion coefficient. As we are only interested
in the value of the function near resonance, we can expand the Cosines around αωτ = Nπ.
If we further consolidate temporarily unimportant coefficients, we have

(∆r)2 ≈ A14n
[
4− (αωτ −Nπ)2

(
1 +

n−1∑
i=0

4i
)]

= A14n
[
4− (αωτ −Nπ)2

3
(4n + 2)

]
.

We have reduced our expression to a parabola of the form f(x) = a − bx2, for
positive a and b. Such a function reaches a maximum of a ≡ A14n+1 = 4A1

( τc
τ

)2
at x = 0

and has a full-width at half-maximum of
√

2a
b ≡

√
24

4n+2 ≈
√

24
2n =

√
24 τ

τc
, for large n. We

relate this width in αωτ to the width in vt by ∆(αωτ)
αωτ = ∆vt

vt
.

Putting all of this together, we now have

∆vt =

√
24l

Nπτc

f(vt) =

√
m

2πkBT
e
− mv2t

2kBT

D =

[
〈|∆r|〉2

τc
f (vt) ∆vt

]
αωτ=Nπ

=
4
√

6

N5π5
α2ω2l3

(
B1

B0

)2 ( r
R

)2α−2√ m

2πkBT
e
− mα2ω2l2

2N2π2kBT . (4.24)

Once again, this agrees with the results presented in [22], up to a multiplicative
factor of 1.5.
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4.8 Using this result

We can finally combine Equations 4.9 and 4.24, along with our numeric integration
results, to estimate the heating of the plasma due to multipole-enhanced diffusion:

∂T

∂t
≈ λq2

2πkBε0

D

r2
p

≈ 4
√

6q2

2π6kBε0

λ

r2
p

α2ω2l3

N5

(
B1

B0

)2 (rp
R

)2α−2√ m

2πkBT
e
− mα2ω2l2

2N2π2kBT . (4.25)

If we wish to rephrase this into a slightly more evocative form, we write

∂T

∂t
≈ (0.009)

q2

kBε0

λ

r2
p

αωl2

N4

(
B1

B0

(
rp
R

)α−1
)2
√

m

2kBT

(
αωl

Nπ

)2

e
− m

2kBT
(αωlNπ )

2

.

What can we take from this? We have that the rate of temperature change is
proportional to the density of the plasma times something with the units of a diffusion
coefficient- exactly what we had in Equation 4.9. We also see that the diffusion coefficient is
proportional to our earlier smallness parameter B1

B0
(
rp
R )α−1, which represents the strength of

the multipole’s magnetic perturbation, squared. Finally, we have a function, f(x) =
√
xe−x,

of a dimensionless ratio. This ratio characterizes how close the plasma is to the resonance
driving the radial diffusion. When x = 1

2 , we are in resonance and f(x) is maximized.
Unfortunately for the succinctness of this formulation, ω cannot be easily measured

and depends on the value of other plasma parameters. Thus, if we want a formula we can
actually use, we’ll need to determine the value of ω. For the case of the Gaussian distribution
mentioned earlier, ω(rp) ≈ (.1) λq

ε0r2pB0
. We also note that the diffusion is strongly suppressed

for large N and neglect all but N=1 for simplicity.

∂T

∂t
≈ 4

√
6q4

200π6kBε30

λ3

r6
p

α2l3
B2

1

B4
0

(
rp
R

)2α−2√ m

2πkBT
exp

[
− mα2λ2q2l2

200π2ε20r
4
pB

2
0kBT

]
. (4.26)

In Figure 4.1, we plot the expected plasma heating in an octupole against temper-
ature while varying various plasma parameters.

Of course, the importance of this result is in how it interacts with other sources of
heating and cooling, particularly cyclotron cooling. Charged particles in a magnetic field
will radiate away energy due to their cyclotron acceleration. The rate of change of their
temperature is given by

∂T

∂t
= − 2q4

9πm3ε0c3
|B|2 T, (4.27)

which, for an electron, results in an exponential decay in temperature with a time constant
of 3.87/B2 s.

Note that as cyclotron cooling is a single-particle effect, the cooling rate does not
depend on any variable parameter but the magnetic field and the temperature.

We would expect a plasma exposed to both of these effects would reach an equi-
librium temperature where the diffusion-enhanced heating balances the cyclotron cooling.
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Figure 4.1: Expected plasma heating as a function of temperature: plots of Equation 4.26 as
a function of temperature for the case of an octupole field. We see that increasing the plasma
density, while keeping the radius constant, or reducing the magnetic field, while keeping the
ratio of the multipole and solenoid field constant, increases heating at high temperatures
and decreases heating at very low temperatures. Increasing the plasma radius, while keeping
all other parameters constant, increases heating at all temperatures, but particularly at low
temperatures. Note that we expect alterations in these curves over time in addition to what
would be expected from increasing radius and decreasing density, due to diffusion. Note that
the values of the plasma parameters used to generate these plots were chosen to emphasize
the general trends and are not necessarily representative of experimental plasmas.
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To find such equilibria, it is helpful to consider some features of the heating as a
function of temperature. Refer again to Figure 4.2. Both the heating and its derivative with
respect to temperature go to zero as the temperature approaches either zero or infinity. The
heating has a single maximum with respect to temperature and is monotonically increasing
below this maximum and monotonically decreasing above this maximum.

There always exists a trivial solution at T=0. Since the derivative of the heating
also goes to zero at low temperatures, the cyclotron cooling with always be greater in
magnitude than the heating at sufficiently low temperatures. Thus, this equilibrium is also
stable.

Since the heating is bounded above while the cooling is not, for sufficiently small
values of M and P the heating will always be less than the cyclotron cooling and the only
equilibrium will be at T=0.

However, since the heating below resonance increases exponentially with T, for
higher values of M and P the heating can overtake the cooling, which only increases linearly
with T, resulting in a non-zero equilibrium temperature.

At this equilibrium the heating is increasing more quickly with temperature than
the cooling. Thus, the heating will dominate at temperatures above this point and the
cooling will dominate at all lower temperatures. Thus, this equilibrium, if it exists, is
unstable.

If this equilibrium does exist, it means the heating rate has surpassed the cooling
rate. Since the heating rate goes to zero for sufficiently high T, they must also be equal at
a third point. However, due to the piece-wise monotonic nature of the heating, this is the
last possible equilibrium.

At this point, the heating is either decreasing with temperature or increasing more
slowly than the cooling. At even higher temperatures, the cooling will take over, making
this equilibrium stable.

There is, of course, the critical case where the second and third equilibria occur
at the same temperature. In this case, the cooling is greater than or equal to the heating
at all temperatures, resulting in only the single stable equilibrium at T=0.

So, in summary, for plasmas in a parameter regime with sufficiently weak diffusion-
enhanced heating, cyclotron cooling will dominate and drive the plasma to 0 K. Other
plasmas will be bistable at either 0 K or some single higher temperature.

Determining the condition for bi-stability, the value of the non-zero equilibrium
temperature, or the unstable boundary equilibrium is rather difficult, as you are solving an
equation of the form

T 3/2 = ae−b/T ,

which cannot be solved analytically.
However, if we’re willing to deal with special functions, we can find many solutions,

most of which are complex. The solution that interests us, however is

T → −2b

3W ( −2b
3a2/3

)
,

where W(x) is the Lambert W-function, which is defined as the inverse of xex.
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The relevant features of W(x) to consider are that, for real x, W(x) has no real
values for x < −1

e , W (−1
e = −1, W(x) is double valued for −1

e < x < 0, and is single
valued for x > 0. As we are physically constrained to x < 0, we can rephrase the condition
on bi-stability as

−2b

3a2/3
≥ −1

e

( 0.411)
q2

36c2

(
α2B2

0π

m4ε20

)1/3

≤ 1

e

(
B1

B0

(
rp
R

)α−1
)4/3

, (4.28)

which, interestingly enough, does not depend on the shape or density of the plasma- merely
on the constituent particles, the solenoidal field, and the magnitude of the multipole field
perturbation.

For the case of an electron plasma, this reduces to

(3.06× 10−12)αB0 ≤
(
B1

B0

(
rp
R

)α−1
)2

, (4.29)

and the question is reduced to simply determining how small our small magnetic pertur-
bation is. For a plasma in our octupole with a 1mm radius, the magnetic perturbation is
above this limit by, roughly, a factor of 1000. Thus, we expect most of our plasmas to be
well into the bi-stable regime.

The equilibrium temperature just at the point of bi-stability becomes

Teq =
mα2λ2q2l2

300π2ε20r
4
pB

2
0kB

= (7.30× 10−27)

(
αλl

B0r2
p

)2

, (4.30)

for an electron plasma. If we plug in typical alpha parameters of 1015 particles per cubic
meter and a length of a few millimeters, we get a temperature of roughly 1K. However,
since we expect our plasmas to be far from this critical point, this only serves as a limit
separating the high and low equilibrium temperatures.

Once we are well into the bistable regime, the branch of W(x) that continues
to positive x passes through W(0) = 0 with a slope of 1, corresponding to the stable
equilibrium temperature, which diverges as we pass further and further into this regime. The
other branch diverges roughly logarithmically towards − inf, corresponding to the unstable
equilibrium, which goes towards 0 as -1/log(x), for x → 0. Note that plasmas below this
temperature will stay below this temperature, while those above it will go to the non-zero
stable equilibrium.

If we are well into the bistable regime, the argument of the Lambert-W function is
small and we can Taylor expand the branch corresponding to the stable equilibrium. This
turn out to be equivalent to neglecting the exponential in Equation 4.26, or expanding it
around T →∞. This yields

(kBTeq)
3/2 ≈ 24

√
6m3c3

π3ε20
(.00038)

λ3

r6
p

α2l3
β2

B6
0
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2π
(4.31)

T 3/2
eq ≈ (1.39× 10−27)

λ3

r6
p

α2l3
β2
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(
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R

)2α−2

.



55

Plugging in a variety of typical plasma parameters for the ALPHA experiment yields tem-
peratures ranging from 10-1000K.

Unfortunately, the branch of W(x) corresponding to the unstable equilibrium can-
not be expanded in this way.

4.9 Additional Examples

It may be helpful to consider and compare to the heating caused by other sources
of diffusion.

One of the strongest sources of diffusion for a plasma is Bohm diffusion, also known
as anomalous diffusion. In this case, turbulence in the plasma gives rise to ExB drifts causing
orbits much larger than the cyclotron orbit, enhancing classical diffusion across a magnetic
field.

DB =
1

16

kBT

qB
.

Of course, this is generally observed in neutral plasmas, which we are not dealing
with. However, the name Bohm diffusion is applied to any diffusion process with the same
scaling.

Regardless, if we combine this expression with Equation 4.7, we get

δT

δt
=

q

48πε0

λ

r2
p

T

B
.

If we combine this with the equivalent formula for cyclotron cooling, while simply
plugging in the value of various constants for a pure electron plasma, we get

δT

δt
∼= 10−10 λ

r2
p

T

B
− 1

4
B2T.

This easily solved differential equation permits only exponential growth or decay
of the temperature. The only stable equilibria are at T = 0 or +∞. There is also a finite
unstable equilibrium, but it requires fine-tuning of the plasma parameters relative to the
magnetic field and would be almost always irrelevant.

However, the plasma radius is necessarily an ever-increasing function of time, as
the heating is driven by diffusion. This will cause any plasma that happened to be at
the unstable equilibrium to immediately begin cooling, and eventually halt the exponential
growth of a plasma with a temperature above that point, conveniently removing the solution
at +∞ from the achievable and leaving T = 0 as the only solution.

Numerical solution of the differential equation, as well as dimensional analysis, tell
us that the time required for a plasma initially being heated by Bohm diffusion to begin
cooling is τ ≈ r2

p/DB, which is on the order of milliseconds for plasmas of interest to us.
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Chapter 5

Observations

5.1 Overview

The theoretical models in the previous chapter make, essentially, two different
predictions. First, the introduction of a multipole field may enhance diffusion of a plasma.
Second, this diffusion may increase the temperature of the plasma.

Thus, we will first attempt to predict the behavior of our experimental plasmas
under these two effects, separately, and compare this behavior to experimental observations
before attempting to do the same with the total effect.

5.2 Diffusion

5.2.1 Short Times

As established in the previous chapter, we expect a plasma undergoing uniform
diffusion to increase in RMS radius a, if it is sufficiently small compared to the size of the
electrodes, according to

D =
a

2

∂a

∂t
.

Unfortunately, our model predicts a spatially varying diffusion coefficient, in which
case we cannot analytically solve the diffusion equation. However, if the plasma is partic-
ularly small the spatial variation in the diffusion coefficient across the plasma may be
negligible. In this case, we can replace the diffusion coefficient with its average over the
plasma distribution, which may vary in time as the plasma expands.

The simplest reasonable case is to assume the diffusion has a monomial dependence
on the plasma size, D = D0a

p. We note that this is roughly the relation predicted by our
model, in the high-temperature limit. We can solve the resulting differential equation by
integration.

D0a
p =

a

2

∂a

∂t
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2D0dt = a1−pda

2(2− p)D0t = a2−p − a(0)2−p

a(t) =
(
a(0)2−p + 2(2− p)D0t

) 1
2−p .

Or, if p=2, the solution becomes a(t) = a(0)e2D0t.
We can sort all possible cases into two easily distinguished qualitative groups,

separated by the p=1 case. If the diffusion coefficient scales with the plasma radius more
rapidly than linearly, the rate of plasma expansion will increase over time. If the diffusion
coefficient scales more slowly, or even inversely with size, the plasma expansion will decrease
over time.

However, for values of p greater than 2, this simplified model predicts a divergence
to infinite radius over a finite time. This is, clearly, a non-physical result. Of course, this
is not unexpected, as the assumption that the diffusion coefficient is roughly constant over
the entire plasma is clearly invalidated long before the plasma reaches an infinite radius.

To see what this means for our model of the diffusion coefficient, we consider our
earlier formula for it, in the high temperature limit and simplified for the case of an electron
or positron plasma:

D ≈
(
1.1× 10−23

) λ2l3

r4
p

(
r

R

)2α−2 α2

B2
0

√
T

(
B1

B0

)2

. (5.1)

Replacing the radial coordinate with the plasma radius (the average of the former
over the distribution will certainly be at least proportional to the latter) and inserting it into

the previous result predicts that the growth rate of the plasma (
∂rp
∂t ) would increase over time

for octupole and higher order multipoles, and decrease over time for lower order multipoles,
with the actual threshold being at α = 3.5, the physically unachievable septupole.

This model also assumes that D0 is not a function of time. However, the diffusion
coefficient depends on the temperature of the plasma, in addition to its spatial distribution.
If the diffusive heating of the plasma is strong enough, the temperature will increase and
D0 becomes a function of time. Thus, this model only holds in the limit where diffusive
heating is not a significant determining factor of the plasma temperature.

We can consider the opposite limit, where the plasma temperature is entirely de-
termined by the balance of diffusive heating and cyclotron cooling, if we consider our earlier
formula for the equilibrium temperature of the plasma, once again in the high temperature
limit and simplified for the case of an electron or positron plasma:

T 3/2
eq ≈

(
1.13× 10−27

)(λl
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rp
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.

If we plug this into the previous expression for the diffusion coefficient, we get

D ≈
(
1.1× 10−14

) λl2

r2
pB

2
0

(αB1)4/3
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r

R

)2 (rp
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)−2/3
]α−1

. (5.2)
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This results in the same solution as the previous model, though the transition from
an expansion rate that decreases over time to one that increases now occurs at α = 3.25. So,
the qualitative result is the same for all constructable multipoles, including the divergence
for multipoles of order higher than 4.

Of course, in the physical case, the diffusive heating of the plasma will be only
one of several contributors to the plasma temperature. Unfortunately, there are no simple
analytic solutions to cases intermediate to the two we’ve just considered. Regardless, we
expect the true solution to lie between the two, qualitatively very similar, approximate
solutions.

5.2.2 Intermediate Times

There are two additional effects that must be considered to extend this model to
intermediate times.

First, on time scales of roughly r2
p/2D the plasma changes shape. This reduces the

diffusive heating of the plasma. However, as this effect will merely move the plasma closer
to one of the short time solutions we’ve already considered, it doesn’t warrant additions to
the model.

Secondly, the assumption that the diffusion coefficient is uniform over the entire
plasma becomes worse and worse as time goes by, even resulting in blatantly unphysical
solutions for some cases. To avoid this, we must solve the diffusion equation for the case
of a spatially varying diffusion coefficient. Unfortunately, this can only be done, in general,
numerically.

These numerical results can vary tremendously based on the initial conditions of
the plasma and the details of the perturbing magnetic field. However, we see two limiting
behaviors that seem to be universal. First, at short times, the numerical solution agrees with
the results obtained by ignoring the change in the diffusion coefficient across the plasma.
Second, at later times, the plasma expands more and more slowly, appearing to grow as
between the square root of time and its logarithm. The transition between these two states
generally occurs on a time scale consistent with that expected for a spatial reorganization
of the plasma.

In Figure 5.1 we present the numerical solutions of the diffusion equation for the
expansion of a plasma over time in a multipole field, with the diffusion coefficient derived
above, for a variety of situations of interest.

5.2.3 Late Times

At late times, we must consider that there is an upper limit to the size the plasma
will reach via diffusion, set by the size of the confining electrodes. Once particles can reach
the electrodes, they will be lost from the plasma and the total number of particles will
decrease over time, while the spatial distribution comes into equilibrium.

Unfortunately, the process is not even as simple as this. A plasma is not a truly
continuous medium. It consists of discrete particles undergoing complex motions between
collisions. As described earlier, these particle orbits may often have quite considerable
radial excursions. Thus, even before the smooth density distribution of the plasma hits
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Figure 5.1: Numerical solutions to the non-uniform diffusion equation: In these curves we
vary the size of the plasma while holding the total number of particles constant, the order
of the multipole magnet, and the importance of external heating. For the curves labeled
Quadrupole externally dominated, it is assumed that the temperature of the plasma is set
entirely by external sources of heating. For the curves labeled Quadrupole, it is assumed
that the temperature of the plasma is driven primarily by the expansion of the plasma.
Thus, the temperature of the plasma rises as it expands and the diffusion is suppressed.
This distinction is not made for the Octupole, as the numerical scaling is unaffected. In all
cases, it is assumed that the starting temperature is significantly above resonance.
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it, individual particle will be able to follow ballistic trajectories onto the wall. This effect,
potentially, places an even lower upper limit on the size of the plasma.

To evaluate the potential impact of this effect, we first recall the form of the
magnetic field in the trap:

~B = B0ẑ +B1

(
r

R

)α−1

(cos(αθ)θ̂ + sin(αθ)r̂).

Particles can be lost ballistically to the wall when they are on a field line that
intersects the wall. Those that do so first are those with the maximum radial excursion,
which are those at sin(αθ) = 1. If we assume that such a field line passes through an
arbitrary point (r=r0, z=0), we can find the radial location of that field line, r(z), at any z
using

dr(z)

dz
=
Br
Bz

=
B1

B0

(
r(z)

R

)α−1

.

Solving this equation, for the case of an octupole (α = 4) yields

r(z) = r0/

√
1− 2z

B1

B0

r2
0

R3
.

If a plasma held in a trap is subjected to the introduction of a multipole field,
we expect the ends of the plasma to deform symmetrically, while the center of the plasma
remains relatively unchanged [23]. Thus, the relevant maximum value for z is half the length
of the plasma, lp.

So, if r(lp/2) ≥ R for any r0 where the plasma has a significant density, particles
will be subject to this ballistic loss. The critical radius, when this begins to occur, is given
by

rc = R/

√
1 +

lp
R

B1

B0
.

While this treatment only considered those field lines with maximum radial excur-
sion, the plasma will rotate azimuthaly over time, eventually bringing any particle onto such
a line. As a result, both simulations and experiments [16] show that particle loss occurs
quite quickly for plasmas that meet this criteria.

However, by design, most of the plasmas considered here are small enough, both
longitudinally and azimuthally, that this effect is not a significant concern.

5.2.4 Observations

Unfortunately, observations of real plasmas in real magnetic fields have the added
complication that the magnets producing the multipole field cannot be turned on instan-
taneously. Our octupole can be, typically, ramped up to its full current over no less than
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30s. This time scale is comparable to the expected diffusive time scales, making compar-
ison with the simple analytical models problematic. Fortunately, the numerical model are
entirely capable of considering time-varying parameters.

Additionally, the experimental situation in the real world is not nearly as plastic as
theoretical space. Thus, we cannot compare experimental results to the model of expansion
presented here in its full generality, but only in the specific situation of our experimental
apparatus.

In Figure 5.2, we present the expansion of a plasma over time as the octupole
magnet is turned on and left at full current along with the results of our model for the same
case.

5.3 Heating

We also have a quite extensive model for the heating of a plasma undergoing
diffusion in a multipole field. However, the principles behind it are applicable regardless
of the reason for the plasma’s expansion. This is, if we know the size of the plasma as a
function of time, we can directly solve eq 4.6 without any reference to diffusion.

In Figure 5.3, we present the temperature of the plasma undergoing the expansion
depicted in Figure 5.2. We also show a value for the expected temperature of the plasma,
assuming that its temperature is set entirely by the balance between expansion-driven heat-
ing and cyclotron cooling. This value is calculated based solely on the observed expansion
of the plasma.

However, it is often the case that we care about the heating of a plasma more than
any expansion that plasma might be undergoing. Thus, we would like to have a description
of the heating of the plasma that doesn’t require us to first either measure or solve for the
plasma’s expansion.

Leading up to Equation 4.9, we found that, for the drastically simplified case of
free, uniform diffusion,

∂T

∂t
≈ λq2

6πkBε0

1

rp

∂rp
∂t

.

If we consider the case of an octupole magnet, we also found that, for short times,
the plasma radius expands as rp ≈ rp0e2D0t. Plugging this in to the previous equation yields

∂T

∂t
≈ λq2

3πkBε0
D0.

However, we also found that, at later times, the plasma’s expansion slows. For
the sake of simplicity, assume that the plasma makes an immediate transition to expanding
as b + c/ln(t) at some time t1, where b and c are constants chosen to maintain continuity
of the plasma radius and its first derivative. Plugging this into our approximation for the
plasma heating yields

∂T

∂t
≈ λq2

3πkBε0
D0

t1
t

rp(t1)

rp
.
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Figure 5.2: Expansion of a plasma in the octupole: we begin the ramping of the octupole
magnet at t=0 and it finishes at t=30s. The model comes from a numerical solution of the
diffusion equation with the diffusion coefficient given by Equation 5.2 and an initial density
of 1015 particles per cubic meter. Recall that, as our measurement of the plasma radius is
destructive, data points represent individually prepared and evolved plasmas. Error bars
represent systematic errors
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Figure 5.3: Heating of an expanding plasma: the measured (black) points represent the
temperature resulting from the same plasma parameters and multipole field behavior as in
Figure 5.2. The calculated (red) temperatures are based solely on the expansion observed
in Figure 5.2. As this calculation is based on experimental data, it is given error bars based
on the propagation of errors in that data.
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We can test this approach by directly integrating the numerical solutions of the
diffusion equation described in the previous section. Unfortunately, for the case of spatially
varying diffusion, this approach turns out to produce results that are merely evocative of
the numerical results. That is, it correctly predicts that the heating will decrease and over
roughly the correct time-scale, but does not match the functional form of the numerical
results.

We might also expect the heating to decrease similarly to
(
1− S

(
rp(0)

2D(0)t

))
, a

function defined in Equation 4.10 and derived for the case of uniform bounded diffusion.
This slightly more complex analytic approach, thankfully, matches quite will with

numerical results for those particular varieties of non-uniform diffusion coefficients of interest
to us.

5.4 Effects of Finite Temperatures

Unfortunately, all of our previous attempts to determine the expected tempera-
ture of the plasma neglected all potential sources of plasma heating or cooling, outside of
expansion-driven heating and cyclotron cooling. This was done out of necessity as, even for
the simplest possible case of a uniform heating applied to individual particles, the equations
become, analytically, completely intractable.

To consider these cases, we need to take a step back, and consider only the heating
caused by the diffusive expansion, simplified here to the case of a lepton plasma in an
octupole.

∂T

∂t
≈ (5.76× 10−27)

(
λlp
r2
p

)3
B2

1

B4
0

〈(
r

R

)6
〉

1√
T
e
−(1.75×10−25)

λ2l2p

r4pB
2
0
T ,

where we’ve temporarily ignored the reduction in heating over time caused by the spatial
reorganization of the plasma.

For purposes of comparison with experiment, we may wish to rephrase our expres-
sion in terms of the central density of the plasma, n0, instead of the linear charge density,
λ. In that case, we have

∂T

∂t
≈ (1.07× 10−24) (n0lp)

3 B
2
1

B4
0

(
rp
R

)6 1√
T
e
−(1.73×10−24)

n20l
2
p

B2
0
T . (5.3)

This heating has a maximum, with respect to temperature at

TM ≈ (3.46× 10−24)

(
n0lp
B0

)2

∂T

∂t
(TM ) ≈ (3.6× 10−13) (n0lp)

2 B
2
1

B3
0

(
rp
R

)6

.

For lepton plasmas used in ALPHA, the temperature of maximum heating is typically
between 1 and 1000K. Unfortunately, almost all of our plasmas fall in this temperature
range. For the same plasma parameters, the rate of heating is on the order of 1000K/s or
higher. Thus, any plasma near this temperature will not remain there for long
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We can compare this to cyclotron cooling at the same temperature, as done in
chapter 4 with greater generality.

∂T

∂t
(TM ) ≈ −(8.65× 10−25) (n0lp)

2 .

As in chapter 4, we see that this comparison comes down entirely to the size of the magnetic
perturbation and the background magnetic field. For typical ALPHA plasmas, this pertur-
bation is always large enough that the maximum diffusion-driven heating will be stronger
than cyclotron cooling at the same temperature, though usually only be a factor of 10.

If the maximum heating due to diffusion were much less than cyclotron cooling
at this temperature, it would be much less at all other temperatures, as well. Thus, the
diffusion based heating should have minimal effect on the temperature, even when other
sources of heating are considered.

If the heating were much greater than the cyclotron cooling at TM , then we enter
the strongly bifurcated regime where cyclotron cooling, and thereby equilibrium, can win
out only at temperatures much greater than or less than TM .

Unfortunately, without prior assumptions or lengthy series of measurements, we
do not necessarily know how any additional sources of heating behave with the various
plasma parameters or if they are, potentially, affected by the same magnets that result in
the enhanced diffusion. However, one thing is almost certain. Without the contribution of
the enhanced diffusion, the plasma will reach some equilibrium temperature, T0, under the
influence of cyclotron cooling and these additional heating sources. Comparing T0 and TM
allows us to anticipate how the plasma temperature will behave under the influence of both
(or all) sources of heating.

If T0 is much greater, then the temperature will certainly remain much greater
when the diffusion-based heating is introduced. This places the plasma in the high temper-
ature limit, where our expression for the heating can be drastically simplified. Additionally,
since the multipole-enhanced diffusion is suppressed at high temperatures as 1/

√
T , the

heating should also be suppressed.
If the two temperatures are comparable, then we would expect the diffusion-based

heating to be maximized, at least initially. The impact this has on the temperature of
the plasma, however, depends on the relationship between the diffusion-based heating and
cyclotron cooling. So long as the former is not negligible in comparison to the latter, we
would expect the plasma temperature to increase significantly, and likely settle somewhere
in the high-temperature limit. Otherwise, we still would not expect notable heating.

If T0 is much less than TM , the plasma will start in the low temperature limit,
where diffusion is suppressed even more strongly than in the high temperature limit. Thus,
unless the diffusion-based heating is much stronger than cyclotron cooling, the plasma
should remain cold. However, determining what would happen in the other case requires a
slightly more complicated analysis.

In such a case, we can also compare the diffusion based heating and cyclotron
cooling at T0, instead of TM . If the heating is much greater, the plasma may heat up,
though it will likely not heat up into the high-temperature limit, making any attempted
calculation of the temperature particularly cumbersome. If the heating is much less, the
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Density (108cm−3) Radius (mm) Initial Temp (K) Final Temp (K)

4.49 0.52 44 44
4.01 0.51 55 64
15.1 0.28 57 247
8.13 0.37 56 135
11.0 0.46 59 359
4.27 0.77 61 94
2.65 0.44 44 46
7.53 0.28 44 102
3.98 0.28 36 42
4.65 0.26 40 41
0.41 0.83 29 35
18.1 0.36 65 454
2.13 0.69 36 57
2.48 0.64 43 49
6.98 0.57 56 175
17.4 0.22 50 177
15.7 0.21 41 65
11.8 0.92 51 383
9.32 0.36 49 127
2.69 0.66 51 51

Table 5.1: The data presented in Figure 5.4

plasma should not heat significantly. If these two values are comparable, we remain in a
regime where the temperature behavior of the plasma may be rather chaotic.

5.5 Observations of Finite Temperature Plasmas

In Table 5.1, we present the temperature of a wide variety of plasmas after heating
in the octupole, and without heating in the octupole. The temperatures are measured
immediately after the octupole has reached full field, or after an equivalent waiting time.

For almost all of these plasmas, TM is comparable to T0 and the expected heating
of the plasma is either comparable to or much greater than the expected cyclotron cooling.
Thus, we’re in a regime where significant heating of the plasma is entirely possible, though
not certain.

In order to more accurately predict whether the plasma will heat in the octupole,
or to what temperature it will heat to, we need to make some assumptions regarding the
behavior of whatever source of heating results in the initial temperature of the plasma. The
simplest possible assumption, of course, is that this heating doesn’t depend on the plasma
temperature or any of the other plasma parameters. In that case, we can simply balance
this unchanging source of heating, PB, against cyclotron cooling.
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Figure 5.4: Heating of finite temperature plasmas in the octupole: points represent sets
of plasma parameters where temperature measurements were performed both after the
introduction of the octupole field and without the field, but with an equivalent wait time.
Points are classified by the temperature difference between these two cases. Uncertainty
in the temperature measurements is, at the very best, on the order of 5K, so differences
of 10K or less are compatible with no heating. Lines represent theoretical predictions of
sets of plasma parameters where the stated temperature difference is expected to occur.
Ideally, all points of a given color would be below the line of the same color and above any
lower-temperature lines.
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PB − (0.258)
∣∣∣B2

0

∣∣∣T0 = 0.

We can then add the diffusion-based heating, PD, we’ve been considering.

(0.258)
∣∣∣B2

0

∣∣∣T0 − (0.258)
∣∣∣B2

t

∣∣∣T + PD = 0

T − T0 =
PD

(0.258)B2
.

We assume that the octupole field is effectively a perturbation on the plasma and
make the approximation that the magnitude of the magnetic field doesn’t change. We
will also assume that the change in plasma parameters during the ramping of the octupole
magnet is small. We could, in principle, numerically determine an expected change for each
of the plasmas under consideration. However, the final result is not sensitive enough to the
plasma radius to necessitate the correction.

Figure 5.4 presents the results of this approximation as contours of constant ex-
pected heating, along with the plasmas from Table 5.1 classified by the magnitude of ob-
served heating. Considering the number of approximations used in calculating the contours.
The agreement with observation is relatively remarkable.

5.6 Other Particle Species

One might recall that we deal in particles other than electrons and positrons:
antiprotons. These particles are also held in the octupole field prior to antihydrogen forma-
tion and may also heat. Thankfully, it is simple to re-generalize the results of the preceding
sections.

The temperature where diffusive heating is maximized increases with the mass of
the particles in question, assuming they possess only a single elementary charge.

TM ≈ (3.46× 10−24)
m

me

(
n0lp
B0

)2

.

The expected diffusion-driven heating at that temperature is, in fact, not changed.
However, the rise in temperature due to that heating increases greatly as cyclotron cooling
scales as the inverse of the particle mass cubed. This has the unfortunate effect of driving
the cyclotron equilibration time out to several centuries, making it impossible to realistically
measure the equilibrium temperature.

Thus, if we took one of the electron plasma considered in the previous section and
replaced the electrons with antiprotons, the temperature increase at TM would increase
by a factor of roughly 1010. However, the value of TM would rise by a factor of roughly
2000. Thus, if the plasma was originally near TM for an electron plasma, it will be far into
the low-temperature limit as an antiproton plasma, reducing any heating predicted by this
model to essentially nothing. So, we would not expect such a plasma to heat observably.
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Of course, the other plasma parameters, such as density and size, can also vary.
Reducing the density of the plasma may bring TM back down without compromising the
heating too strongly. However, this has a limit once the antiprotons become sparse enough
to stop acting as a plasma and the assumptions underlying our model for diffusion fall apart.
Regardless, heating was never observed in an experimentally relevant antiproton cloud.

5.7 Conclusions

We see that plasmas in the field of our octupole magnet undergo increased radial
expansion and Joule heating consistent with our model of multipole-enhanced diffusion.
Specifically, by carefully selecting the plasma parameters we can render these effects negli-
gible.

If we wish to minimize the heating of the plasma for a given value of the diffusion
coefficient, we must minimize the plasma density, as that is the only other variable parameter
that the heating depends on. Unfortunately, reducing the density of our plasmas would
also reduce the formation rate of antihydrogen. Thus, this may not be an ideal route for
optimization.

There are two possible avenues for minimizing the diffusion of the plasma. The

first is to minimize the magnetic perturbation that drives the diffusion:
(( rp

R

)α−1 β
B0

)2
.

Of course, since reducing β/B0 reduces our capacity to actually trap antihydrogen, this
essentially boils down to keeping the plasma as small as possible.

The second avenue is to avoid the resonance that drives the radial diffusion. The
principle resonance occurs when (αωlp/π)2 = kBT/m. Recall that the frequency of the
plasma’s ExB rotation, ω, is linearly proportional to the ratio of the plasma density to the
magnetic field. We can avoid this resonance by making the right hand side of the equality
larger than the left side. This is the regime most of our lepton plasmas appear to be in.
Unfortunately, our model predicts that the heating of the plasma will decrease rather slowly
as we move farther into this regime. Additionally, we can only move the plasma farther into
this regime by increasing its temperature, which is contrary to the entire point; reducing the
the plasma density, which we’ve already established is less than ideal; reducing the plasma
length, which is generally already at the minimum set by the physical size of the electrodes;
or increasing the solenoidal magnetic field, which will reduce the depth of the neutral atom
trap.

On the other side of the resonance, however, all of these factors work in our favor,
and steps that move us farther from resonance will likely increase our trapping efficacy.
The model also predicts that the heating of the plasma will fall off quite quickly on this
side of resonance. This appears to be the regime that our antiproton clouds are generally
in. Unfortunately, our model neglects any effects this change in plasma parameters would
have on the temperature of the plasma before the introduction of the multipole field. Thus,
attractive though it may be, it might not be mechanically possible for us to move our lepton
plasmas to the low-temperature side of resonance.
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