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Abstract
The influence of gravity on anti-hydrogen dynamics in magnetic traps is studied.
The advantages and disadvantages of various techniques for measuring the ratio
of the gravitational mass to the inertial mass of anti-hydrogen are discussed.
Theoretical considerations and numerical simulations indicate that stochasticity
may be especially important for some experimental techniques in vertically
oriented traps.

PACS numbers: 05.45.−a, 37.10.Gh, 04.80.−y

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background and motivation

Trapping of neutral anti-hydrogen was first achieved in 2010 by the ALPHA collaboration [1]
and, by 2011, ALPHA had reported confinement times up to 1000 s [2]. Focus is now shifting
from proof-of-principle production and confinement toward precision measurements and tests
of fundamental physics.

There are multiple long-term goals motivating anti-hydrogen research: the first is to search
for possible CPT violation by examining the spectra of anti-atoms. A first step in this direction
was taken in 2012, when ALPHA measured the frequency of transitions between hyperfine
levels to a relative precision of 10−3 [3]. Future work will concentrate on high precision
measurement of this hyperfine splitting, and of the two-photon 1S → 2S transition. Another
goal is to search for violations of the weak equivalence principle—the equality of the inertial
and gravitation mass of any object, independent of its composition or structure.

Initial experiments with sensitivity to gravitational effects of the Earth on neutral anti-
matter have been conducted [4, 5], and other experiments are planned [6, 7]. The ALPHA
collaboration has inferred limits on the ratio F = M/m of gravitational mass M to inertial
mass m of anti-hydrogen by carefully comparing the simulated and experimentally determined
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temporal and spatial distributions of anti-hydrogen annihilations observed during the slow turn-
off of magnetic trap which confined the anti-atoms. Values of F > 110 and F < −65 were
rejected [4] at a statistical significance level of 95%. In a 2012 publication on anti-hydrogen
trapping [5], the ATRAP collaboration reported a gravitational measurement that rejects F
values greater than 200 at a 2σ level. Their methodology was mentioned only briefly, but is
apparently based on counting annihilation events during radial field shutdown in their vertical
trap. Understanding the possibilities and limitations of these techniques on trapped neutral
anti-matter provides the motivation for the present work. Two other experiments intending
to test the weak equivalence principle, AEGIS [6] and GBAR [7] also rely on the anti-
proton decelerator (AD) at CERN, but will use beams of anti-hydrogen rather than trapped
populations, and hence their operation is beyond the scope of this paper.

We present here a detailed study of the influence of gravity on the nonlinear classical
dynamics of trapped anti-hydrogen and, in particular, how features of the nonlinear dynamics
impact gravitational measurement techniques in vertical traps. Horizontal traps will be
discussed in more detail elsewhere. Analysis is performed in some generality, but specific
numerical examples are motivated by what we infer are the methodology and, roughly, the
field geometry used in [5], as well as the possibility of using a vertically-oriented version of
the ALPHA trap. Unless we have misunderstood the ATRAP methodology, our simulations
and analysis show no effect of gravity at the levels of sensitivity claimed in their measurement,
or, indeed, at lower sensitivity.

1.2. Dynamical framework

ALPHA [8] and ATRAP [9] trap neutral anti-hydrogen in a quasi-static magnetic minimum
created by three sets of external coils: two mirror coils produce a field �Bm confining the anti-
atoms axially, and a multipole coil produces a field �Bp confining them radially. Both the mirror
and multipole fields will exhibit spatial variation, and may also have time dependence. These
trapping fields are superimposed on a static, uniform background solenoidal field �Bb = Bb�̂z (a
legacy of the charged-species trapping preceding anti-hydrogen production), which reduces
the effective trap depth but also, felicitously, tends to suppress non-adiabatic spin flips in the
neutral anti-atoms near the field minimum. The total magnetic field at a position �r and time t
is then given by the vector sum

�B(�r, t) = �Bb + �Bp(�r, t) + �Bm(�r, t). (1)

The orientation of �Bb, which here establishes the longitudinal (z) axis, will be assumed to be
either vertical or horizontal, i.e. parallel to or perpendicular to the Earth’s local gravitational
acceleration �g.

The present analysis pre-supposes a number of other simplifying assumptions. A
semiclassical approach describes the internal states of the anti-atom quantum mechanically
while treating the center-of-mass (COM) degrees of freedom classically. While we allow for
the possibility of matter/anti-matter asymmetry in gravitational interactions, such that the anti-
atom may have an effective gravitational mass M different from its inertial mass m, we shall
here presume, consistent with CPT invariance, that each anti-hydrogen is precisely electrically
neutral, so experiences no net external Coulomb nor COM Lorentz forces, but can experience a
Zeeman force due to a non-zero expectation value for its magnetic moment, whose magnitude
is identical to that of an ordinary hydrogen atom in the corresponding internal quantum state.

Trapping times are sufficiently long so that we may confine attention to anti-atoms which
have relaxed to the orbital ground state [10], in which the anti-atom’s magnetic moment is
dominated by the positron spin, and to low-field-seeking spin states, such that the anti-atoms
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can be trapped near a magnetic minimum. (Those anti-atoms in a high-field seeking state
quickly hit the trap wall and are thus not considered here.) The effects of the magnetic field
on the internal state are small since

μBB = 1
2 ��e � α2mc2, (2)

where α = e2/�c (in Gaussian units) is the fine structure constant, � = h/2π is the reduced
Planck’s constant, c the speed of light in vacuo, m is the rest mass of the positron and e
is the magnitude of its electric charge, while μB = e�/2mc is the Bohr magneton, and
�e = �e(�r, t) = eB/mc is the local positron gryofrequency, where B = B(�r, t) = |�B(�r, t)| is
the magnitude of the total magnetic field at position �r and time t.

Characteristic anti-hydrogen translational temperatures T are such that translational
motion remains entirely non-relativistic:

kBT � mc2,

where here kB is Boltzmann’s constant. The temperature should also be sufficiently low so that
as the anti-atom translates, the changes experienced in local magnetic field strength remain
adiabatic with respect to spin dynamics:√

kBT

m

|�∇�e|
�e

� �e, (3)

for spatial positions �r accessible to trapped anti-atoms. A related assumption is that the
characteristic radial bounce frequency ωr and longitudinal bounce frequency ωz are both small
compared to �e. Under these assumptions, the magnetic moment adiabatically tracks the
direction of the field, and the classical COM dynamics is governed by the Hamiltonian

H = H(�r, �p, t) = 1

2m
p2 + μBB(�r, t) + M �g·�r, (4)

where p = |�p|, �p = m�̇r is the momentum of the anti-hydrogen. The + sign in front of μB is
appropriate for anti-atoms that are in a low-field seeking hyperfine state—those that can be
stably trapped in a local minimum of B(�r, t).

The study of anti-matter gravitational forces requires examining the anti-hydrogen
dynamics for various assumed values of the ratio F = M/m and comparing these results
with experimental observation. The gravitational force modifies the dynamics in ways that
depend on trap orientation, on field geometry, on initial conditions, and on the time profile of
the trap turn-off. In ALPHA, an octupole field provides transverse confinement, and the trap
axis is horizontal, perpendicular to �g [8]. ATRAP instead employs a quadrupole for transverse
confinement, while the trap axis is vertical, parallel to �g [9].

In cylindrical coordinates (r, φ, z) oriented such that the solenoidal field points along ẑ,
the squared-magnitude of the total field (1) is

B2 = B2(r, φ, z, t) = B2
r (r, φ, z, t) + B2

φ(r, φ, z, t) + [Bm z(r, z, t) + Bp z(r, φ, z, t) + Bb]2,

(5)

where Br and Bφ are the radial and azimuthal field components, which arise from both the
multipole and the mirror coils. Clearly, the general form of the trapping potential μBB will
depend non-trivially on (r, φ, z) and possibly on t if field turn-off is modeled. However, since
the decay of the magnetic fields is very slow, unless otherwise noted, our dynamical analysis
will be performed presuming a frozen value of the Hamiltonian, and the explicit t dependence
in B = B(�r) or therefore H = H(�r, �p) will generally be suppressed in the notation.
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1.3. Basic dynamic considerations: regular versus stochastic trajectories

We can gain some basic understanding of the dynamics if we temporarily ignore the
radial component of the mirror field and any end effects from the multipole. Under these
simplifications, an order-� multipole field yields B2

r +B2
φ ∝ r2�−2, with no φ-dependence in field

magnitude, i.e. B = B(r, z). For a vertical trap, the total (magnetic and gravitational) potential
U (�r) ≡ μBB + M�g ·�r is then axially symmetric and separable, i.e. U (�r) = Ur(r) +Uz(z), and
the longitudinal anti-hydrogen motion along z is uncoupled from the transverse motion in the
(r, φ) plane. The trajectories are regular and fully determined by integrating two one-degree-
of-freedom Hamiltonian systems, namely

H‖(z, pz) = 1

2m
p2

z + Uz(z), (6)

H⊥(r, pr; pφ ) = 1

2m
p2

r + 1

2mr2
p2

φ + Ur(r), (7)

where pr and pz are, respectively, the radial and longitudinal components of the momentum,
and the azimuthal component pφ represents the angular momentum along ẑ.

In this situation, there are three dynamical invariants: the perpendicular energy H⊥ = E⊥,
the parallel energy H‖ = E‖, and the angular momentum pφ = mrvφ , where vφ = (ẏx − ẋy)/r
is the azimuthal velocity. Any one trajectory with total energy E = E‖ +E⊥ will not be ergodic
and will not explore the entire energy hypersurface H(�r, �p) = E. Consider the consequences
of very slowly lowering the transverse confining field, i.e. Ur → 0 as t → ∞. With uncoupled
motion there will be no correlation between the axial dynamics, where gravity acts, and
the transverse dynamics; the motions are uncoupled and non-ergodic. Consider an anti-atom
that has a kinetic energy below the level of transverse potential barrier, but above the axial
potential barrier. Such an anti-atom is confined transversely, but may escape the trap axially.
Nonetheless, it will remain confined if enough of its energy is tied up in transverse motion;
because there is no coupling, it would never come to possess sufficient energy to overcome
the axial barrier.

In more realistic geometries, some amount of coupling will be caused by the radial
components of the mirror field, by the octupole end effects, and by higher-order multipole
contributions. If the coupling were sufficient to make the motion fully ergodic, then an anti-
hydrogen with total energy E exceeding the lowest of the axial trapping potentials Umin would
eventually escape. Knowing Umin would then allow one to obtain a bound on M by varying
only the radially confining potential. Such ergodicity appears to have been implicitly assumed
in the gravitational discussion in [5].

Since the dynamics in a realistic magnetic field formed by mirror and multipole coils are
not fully integrable, nor expected to be fully ergodic, numerical simulation may be required.
For small coupling, large regions of phase space should remain integrable. The KAM theorem
[11] suggests that the majority of resonant tori will survive sufficiently small perturbations
and the corresponding trajectories remain quasiperiodic. In this case, many anti-atoms would
remain trapped even when, ostensibly, they appear to have sufficient energy to escape axially.

The remainder of this paper is organized as follows. In section 2, a perturbation theory is
used to study the influence of coupling on the anti-atom dynamics. A discussion of numerical
issues and detailed simulation results for a vertical trap with a field profile similar to that
of the ATRAP experiment are presented in section 3. These results indicate weak coupling
between the transverse and longitudinal dynamics, which may be typical for other existing
atom traps [12] as well. An alternative approach to measuring anti-hydrogen gravitational
mass in a vertical trap, which involves turning off the mirror fields (which does not require
anti-atom ergodicity), is also discussed. Our conclusions are given in section 4.

4



Class. Quantum Grav. 30 (2013) 205014 A I Zhmoginov et al

2. Analytical description of single anti-atom motion

Detailed analysis of single anti-atom dynamics in a magnetostatic trap is crucial for
understanding anti-hydrogen losses, laser cooling of trapped anti-hydrogen, and limitations
of different approaches to measuring the gravitational mass of anti-hydrogen. While there is
no general solution for the full three-dimensional anti-atom trajectory in arbitrary fields, the
analysis can be considerably simplified and some insight provided by the case of a trap with
nearly-separable confining potentials.

To begin, we apply canonical Hamiltonian perturbation theory [13] to analyze single anti-
atom motion and then use obtained results in section 3.3 to compare numerical simulations
with analytical predictions.

2.1. Perturbation theory for weakly coupled motion

Consider anti-hydrogen motion in an almost separable potential U (r, φ, z), i.e. U (r, φ, z) =
Ur(r) + Uz(z) + δU (r, φ, z), with δU much smaller in magnitude than Ur(r) + Uz(z). After
rewriting the original (frozen) Hamiltonian (4) as

H(r, φ, z, pr, pφ, pz) = p2
r

2m
+ p2

φ

2mr2
+ p2

z

2m
+ Uz(z) + Ur(r) + δU (r, φ, z) = H0 + δU, (8)

the term δU can be considered as a perturbation to the integrable system with integrable
Hamiltonian H0. For trap designs like those to be discussed in section 3.2, the magnitude
of the perturbation δU may be comparable in relative magnitude to the trapping well depth
(reaching O(1/3) for the vertical quadrupole trap). However, at least in our examples, this
maximal value for δU is accessible to only those anti-atoms that are weakly trapped in both
radial and axial directions, so the perturbation theory should provide some insight into more
typical trajectories.

The first step in applying the perturbation theory to equation (8) is to find the action-
angle variables of the unperturbed Hamiltonian H0. The axial motion is uncoupled from the
transverse oscillations [13]:

Iz(H‖) = 1

2π

∮
pz dz, (9)

where Iz is the axial action, and the integration is performed over a closed trajectory solving
p2

z/2m + Uz(z) = H‖. The frequency of the axial oscillations is ωz = ψ̇z = ∂H‖/∂Iz, where
ψz is the angle variable canonically conjugate to Iz. Assuming that the magnetic field profile
Uz is almost quadratic in some vicinity of z = 0, ωz(Iz) is nearly constant for small Iz (when
the anti-atom oscillates near the center of the trap). However, when Iz becomes so large that
the anti-atom trajectory passes near one of the mirror coils, the frequency ωz(Iz) decreases,
vanishing eventually at Iz = I∗

z , where the anti-atom turning point reaches a local maximum
of Uz(z). This trajectory corresponds to a separatrix in the (pz, z) phase space (figure 1).

The radial action Ir can be found similarly. First consider a canonical transformation of
H⊥ = p2

r/2m + p2
φ/2mr2 + Ur(r) effected by the generating function:

�(r, φ, Ir, Pφ ) =
∫

pr(r; Ir, Pφ ) dr + Pφφ, (10)

where pr(r; Ir, Pφ ) solves equations of motion for pφ = Pφ and H⊥ = H⊥(Ir, Pφ ), with
Ir(H⊥, pφ ) given by

Ir(H⊥, pφ ) = 1

2π

∮
pr(r; H⊥, pφ ) dr. (11)

5
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Figure 1. Phase space portrait of dynamical system governed by H‖ = p2
z/2m+Uz(z) showing two

separatrices passing through the lower S1 (bold solid) and the higher S2 (dotted) axial potential
barriers (top); and a corresponding axial potential profile Uz(z) (bottom). The axial coordinate z is
normalized to the device half-length L, pz is normalized to {2m max

z
[Uz(z) − Uz(0)]}1/2, and Uz is

normalized to max
z

[Uz(z) − Uz(0)].

After this transformation, H⊥ becomes a function of the new actions Ir and Pφ and is
independent of the new 2π -periodic angles ψr and ψφ = φ + , where

(r; Ir, Pφ ) ≡
∫ r ∂ pr

∂Pφ

dr. (12)

The canonical angles are generally defined up to an overall constant. In the following, we
choose ψr = 0 when the anti-atom is closest to the device axis and ψz = 0 when the z
coordinate reaches its maximum, and (r = 0) = 0.

It is generally difficult to obtain analytical expressions for the frequencies ωr ≡ ψ̇r =
∂H⊥/∂Ir and ωφ ≡ ψ̇φ = ∂H⊥/∂Pφ . Their values are related at Pφ = 0, when the anti-
atom velocity has a vanishing azimuthal component. Introducing the full period of transverse
oscillation T⊥(Ir), one can see that φ has a period T⊥, while ψr has a period T⊥/2. Then,
recalling that φ = ψφ −(ψr; Ir, Pφ ), one obtains ψφ(t+T⊥/2)−ψφ(t) = φ(t+T⊥/2)−φ(t)
and, therefore, ωφT⊥/2 = π , or ωφ = ωr/2.

2.2. Axisymmetric perturbation

First, consider the case of a purely axisymmetric perturbation δU (r, z). The Hamiltonian
written in action-angle variables is

H(�I, �ψ) = H0(Ir, Iz) +
∞∑

k=−∞

∞∑
l=−∞

δUk,l(Ir, Iz) eikψr+ilψz , (13)

6
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where δUk,l are the radial/azimuthal Fourier components of δU ( �ψ;�I). The only resonances
are, therefore, of the form k ωr + l ωz = 0. This can be rewritten as:

k
∫ z2

z1

dz√
H‖ − Uz(z)

= −l
∫ r2

r1

dr√
E − H‖ − Ur(r) − P2

φ

2mr2

, (14)

where z1, z2, r1, and r2 are the longitudinal and radial turning points, and H‖ is a function of
Iz. Note that for the pure quadrupole field with Ur ∼ r2, the right-hand side of equation (14)
is independent of E, Iz, and Pφ , while the left-hand side is a function of Iz only.

Consider a long trap with the radius Rw much smaller than the longitudinal half-length Z.
The ratio ωr/ωz scales as Z/Rw and the axial scale of the perturbation δU will be on the order of
the characteristic coil radius Rc. Since the perturbation maximum is reached at R ≈ Rw near the
mirrors, the resonance harmonics δUk,l and the corresponding resonance widths δI ∼ √|δUk,l |
grow with increasing anti-atom energy. But even for the highest-energy anti-atoms, δUk,l is
roughly proportional to (Rc/L) max[δU] exp(−k|Rc/Rw|) and is small. In this case, the radial
anti-atom oscillations are adiabatic [14, 15]. Assuming that most neighboring resonances do
not overlap, the system dynamics within resonance islands is expected to be regular, becoming
stochastic in small vicinities of the island separatrices only. However, since ωz(Iz) vanishes at
the critical point I∗

z (see section 2.1), there will be an area in the phase space where resonances
accumulate and overlap [16], thus forming a stochastic layer in a vicinity of the separatrix at
Iz = I∗

z [14, 15].
The systems with axisymmetric perturbations δU (r, z) possess another non-generic

property which does not survive once azimuthal angle dependence is introduced. Namely, for
small δU , all anti-hydrogen trajectories, even stochastic ones, are localized and cannot change
their energy by more than a certain finite amount. With any amount of angular dependence, this
is no longer the case and, in fact, some trajectories in certain time-dependent two-dimensional
dynamical systems are known [17] to ‘diffuse’ indefinitely albeit slowly, reaching any chosen
value of action at some sufficiently late moment of time. Known as Arnold Diffusion, this
phenomenon will be at least partially responsible for slow anti-atom loss from the stationary
quadrupole and octupole traps (see section 3.3.1).

2.3. Non-axisymmetric perturbation

2.3.1. Resonances. Consider next an angle-dependent perturbation of the form δU (r, φ, z) =
δV (r, z) cos nφ for some fixed integer n. The Hamiltonian is now:

H(�I, �ψ) = H0(Ir, Iz) + 1

2

∑
k,l

δVk,l(Ir, Iz)(e
inφ + e−inφ ) eikψr+ilψz , (15)

where δVk,l is the angular Fourier component of δV ( �ψ;�I). After substituting φ = ψφ −
(ψr; Ir, Pφ ),

H = H0(Ir, Iz) +
∑
k,l

(
δWk,l,n(Ir, Iz) eikψr+ilψz+inψφ + δWk,l,−n(Ir, Iz) eikψr+ilψz−inψφ

)
, (16)

where δWk,l,n is calculated given all the δVk,l as well as (ψr). Since the angle-dependent
harmonic is fixed, the resonance condition becomes:

Qk,l,±n(�I) ≡ k ωr + l ωz ± n ωφ = 0. (17)

Since all frequencies in equation (17) are functions of Ir, Iz and Pφ , one can find the resonances
in action space. Fixing the total energy H0(Ir, Iz, Pφ ) = E, the resonance curves can, for
example, be plotted in the (Iz, Pφ ) coordinates. Let RE

n be the set of such curves in the (Iz, Pφ )

space corresponding to Qk,l,±n = 0 for some k, l ∈ Z. Such a plot is shown in figure 2 for

7
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Figure 2. Resonances kωr + lωz + sωφ = 0 in the (Īz, P̄φ ) space plotted for E = 390 mK in a
vertical quadrupole trap: |s| = 0 (solid red), |s| = 1 (dash-dotted blue), |s| = 2 (dashed magenta),
|s| = 4 (dotted green). Only resonances with |k| < 10, |l| < 12 and |s| < 12 are shown. The
action Iz is normalized to the action of the separatrix trajectory corresponding to Īz = 1, and
P̄φ = Pφ/(mRwv), where v = √

2E/m and Rw is the wall radius. Note that for a perturbation with
n = 4, all |s| = 1, |s| = 2 and |s| = 4 resonances affect anti-atom dynamics.

the quadrupole trap design discussed in more detail in section 3.3. Notice that the resonances
k ωr + l ωz = 0 in figure 2 are characterized by nearly constant values of Iz, due to the fact that
both sides of equation (14) are independent of Pφ for the pure quadrupole field.

2.3.2. Resonance widths. Characterizing anti-atom dynamics in phase space requires a
knowledge of locations and widths of all important resonances. For sufficiently small δV ,
the characteristic width of the resonance Qk,l,s(Ir, Iz, Pφ ) = 0 is defined by the amplitude of
resonant oscillations Ir ≈ |k|I, Iz ≈ |l|I and Pφ ≈ |s|I, where [18]

I = 4

√
|δWk,l,s|
|∂2∗H0| , (18)

and ∂∗ ≡ k ∂/∂Ir + l ∂/ ∂Iz + s ∂/ ∂Pφ .
Although, for a wide class of smooth functions, the widths I are expected to decrease

exponentially with |k|, |l|, and |s|, the calculation of the exact value of δWk,l,s is generally
quite complex. However, it can be simplified for the Qk,l,0 = 0 and Qh,0,−2h = 0 resonances.
Indeed, δWk,l,0 for n = 0 is given by:

δWk,l,0 = 1
2 δVk,l . (19)

On the other hand, recalling that Qh,0,−2h vanishes at Pφ = 0, one obtains for n = 2h:

δWh,0,−2h = 1

(2π)2

∞∑
k=−∞

∫ 2π

0

∫ 2π

0
δVk,0 cos(2hφ) eikψr−ihψr+2ihψφ dψr dψφ. (20)

After substituting φ = ψφ − , this becomes:

δWh,0,−2h = 1

2π

∞∑
k=−∞

∫ 2π

0

δVk,0

2
e2ih+ikψr−ihψr dψr = δV0,0/2, (21)

8
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where we have used the fact that 2 ≡ ψr (mod 2π) for Pφ = 0. In the following section, we
use equations (17), (19), and (21) to find resonances, estimate their widths, and reach some
qualitative conclusions about anti-hydrogen dynamics in the trap.

3. Numerical simulations

In this section, numerical simulations of single anti-atom motion, aimed at assessing the
ergodicity of anti-atom trajectories and studying the feasibility of gravitational measurement
techniques, are discussed.

3.1. Computational framework

Anti-hydrogen dynamics were simulated using both standard Runge–Kutta and fourth-order
symplectic schemes to integrate the COM equations of motion �̇r = +∂H/∂�p and �̇p = −∂H/∂�r,
where the frozen Hamiltonian H is given by equation (4). The magnetic field profile B(�r) was
calculated from the presumed configurations of magnetic coils at some fixed reference time.
Since determining the magnetic field using the Biot–Savart law or series expansions for
each anti-atom at each moment of time would be quite computationally expensive, we pre-
calculated B on a fixed lattice and then interpolated B at instantaneous anti-atom positions.
Given the representation B(�r) = ∑∞

n=0 B2n(r, z) cos(2nφ + θ2n), in the configurations of
interest, harmonics Bn with n > 2 for quadrupole traps and n > 4 for octupole traps can be
neglected. Therefore, instead of storing a three-dimensional array of B values, we calculated
B0(r, z) and B2\4(r, z) on a two-dimensional lattice. The angular harmonics B0 and B2\4 were
calculated using a fast Fourier transform of B(�r) on a ring (r, φi, z), where φi = 2π i/N with
N = 64.

Using only bilinear interpolation to find B0 and B2\4 at some intermediate point would be
undesirable, since the force acting on each anti-atom is proportional to �∇B, which would then be
a discontinuous function causing noise and large numerical errors in anti-hydrogen trajectories.
Instead, we used a bicubic interpolation, which produced a C1-smooth approximation of B(�r).
Finding coefficients of the interpolating bicubic polynomial for Bk(r, z) required a knowledge
of Bk, ∂Bk/∂r, ∂Bk/∂z and ∂2Bk/∂r∂z at each point of the lattice.

3.2. Trap geometries

Three device designs were considered: (a) a vertically-oriented quadrupole trap with
parameters similar to those of the ATRAP experiment, in which ergodicity and feasibility
of gravitational measurements via lowering of the radial confining potential were studied;
(b) a vertically-oriented octupole trap otherwise similar to the ALPHA apparatus, which we
used to analyze alternative approaches to anti-hydrogen gravitational mass measurements;
and (c) a horizontally-oriented octupole trap similar to the actual ALPHA apparatus (to be
discussed elsewhere).

In all device designs, the background magnetic field �Bb was directed along ẑ, with
magnitude equal to 1 T. In a device design motivated by ATRAP [5, 9] (but not an exact
model), two mirror coils of radius Rp = 10.4 cm were placed at |z| = Z = 10 cm (figure 3).
The total current of approximately 265 kA flowing through each mirror coil increased the
magnetic field at the trap center to 2.2 T, while creating a 375 mK axial well depth. The
quadrupole coil was modeled as a combination of four rectangular loops with longer sides
of length 2Z = 20 cm directed along ẑ and shorter sides of length Rl ≈ 6 cm directed along
either x̂ or ŷ (figure 3). Each loop coil located at |x| = Rl or |y| = Rl carried the total current
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Figure 3. Set of coils used in our numerical simulations: quadrupole coils (solid) with current
directions shown with arrows and mirror coils (dashed). The solenoid creating a constant
background field is not shown.

of approximately 360 kA. As a result, a 375 mK radial well was also created. The trap walls,
on which the anti-hydrogen are assumed to immediately annihilate, were chosen to be at
|z| = 1.2 Z and at r = Rw = 1.8 cm. In a realistic trap, there are no actual walls at |z| = 1.2 Z,
but all anti-atoms reaching this location will never return to the trapping volume and will
annihilate shortly thereafter. Performing the angular Fourier decomposition of B inside this
volume, one obtains |B4(r, z)| < 60 G, while B0 is between 2 T and 3 T, and |B2| � 0.25 T.
Neglecting octupole and higher-order angular harmonics is therefore justified for this trap.

In a trap design based on that of ALPHA, the mirror coils located at |z| = Z = 13.7 cm
created a 670 mK axial well depth for anti-hydrogen. The octupole coil was modeled as a
combination of eight rectangular loops with longer sides of length 2Z, located at a distance
Rl = 2.3 cm from the device axis and connected by shorter sides of length 2Rl tan(π/8).
The magnetic field created by the octupole reached 1.5 T on the trap wall (Rw = 2.22 cm).
Simulated anti-atoms were assumed to annihilate upon encountering this wall or else when
reaching |z| = L = 15 cm.

3.3. Vertical trap simulation

3.3.1. Ergodicity of anti-atom trajectories. As discussed in section 1, a suggested method of
measuring the gravitational mass of trapped anti-hydrogen by lowering the radial well depth
of a vertically-oriented trap and observing annihilations of escaping anti-atoms [5] implicitly
assumes the ergodicity of anti-atom trajectories. The assumption of ergodic trajectories with
energy higher than the lowest of the axial trapping potentials, Umin ≈ 350 mK, was investigated
numerically by simulating anti-atom escape from the vertical quadrupole trap described
in section 3.2. In our simulations, 6 × 103 anti-atoms were initialized in the trap center
homogeneously within a cylinder of radius 1 cm and length 2 cm. The ratio F = M/m of the
anti-atom gravitational mass M to the inertial mass m was chosen to be 200, in accordance
with the limit asserted in [5]. Initial anti-atom velocities were distributed isotropically, and
their energies were chosen randomly and homogeneously from a range Umin � E � 550 mK.
The anti-atom phase space positions were then numerically evolved in time in static fields for
103 seconds, during which a typical anti-atom performed about 2 × 105 axial and more than
7 × 105 transverse oscillations. Every anti-atom encountering the device wall was assumed
to annihilate immediately, causing the total number of trapped anti-atoms to drop over time.
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Figure 4. Fraction f (t) = n(t)/n(0) of anti-atoms remaining trapped in a device as a function of
time. Simulations were performed for 6000 anti-atoms with energies within a range 350 mK � E �
550 mK for a trap with a quadrupole coil simulated by B(r, φ, z) = Bq 0(r, z) + Bq 2(r, z) cos 2φ

(blue solid) and a trap with an octupole coil simulated by B(r, φ, z) = Bo0(r, z) + Bo4(r, z) cos 4φ

(red solid). Anti-hydrogens escape from axisymmetric potentials which, although not realizable
in multipole traps, share the same angle-averaged profiles with quadrupole and octupole traps
were also simulated: a trap with U (r, z) = μBq 0 + Mgz (blue dashed) and a trap with
U (r, z) = μBo0 + Mgz (red dashed). The gravitational to inertial mass ratio F = M/m was
equal to 200 in all simulations except for one, where anti-atom escape from a quadrupole trap with
B(r, φ, z) = Bq 0(r, z) + Bq 2(r, z) cos 2φ assuming F = 1 was analyzed (blue dotted).

Figure 4 plots the simulated fraction of anti-atoms remaining in the trap as a function of
time, f (t) = n(t)/n(0), from t = 0 s to t = 1000 s. Different numerical integration schemes
showed good agreement, and indicated that after 1000 s more than 25% of all anti-atoms
remained trapped in the device with only 2.5% of anti-atoms escaping in the last 999 s. That
is to say, most escaping anti-hydrogens are not actually trapped and escape very early—about
90% anti-atoms which do escape leave the trap within the first 10 ms, which is comparable to
a single axial bounce time. On other hand, out of those trapped in the device, only about 20%
escape in 1000 s due to energy exchange between different degrees of freedom. The fact that
in our simulations there exist anti-atoms trapped in the system for 1000 s is not consistent with
the assumption of ergodicity; instead, it indicates the existence of bounded regular trajectories.
Simulations below (see 8) show that the assumptions implicit in [5] are not valid and F = 200
cannot be distinguished from F = 1 with this methodology.

It is instructive to see the effect of the angle-dependent harmonic in B(�r) on the anti-
atom escape rate. In one of our simulations, we considered an axisymmetric potential
U (r, z) = μBq 0(r, z) + Mgz identical to the quadrupole potential except for an artificially
suppressed μBq 2(r, z) cos 2φ term (figure 4). This potential has the same angle-averaged
profile as in the quadrupole field, but it cannot be physically realized. In this case, similar to
the previous quadrupole simulation, more than 50% of all anti-atoms escaped within the first
10 ms. However, f (t) at later times was much flatter in the axisymmetric system, suggesting
that the angular resonances may be responsible for a slow anti-atom transport in phase space.
Indeed, such resonances may lead to Arnold diffusion, which slowly empties resonance layers,
driving resonant anti-atoms to the walls.
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The resonance effect of the angular harmonics is even more strongly pronounced in
fields with higher multipole perturbations. To observe such effects, we simulated anti-atom
dynamics in the octupole field by changing the total number of loop currents in the vertical
quadrupole trap described in section 3.2 from four to eight and also increasing the current Iq

by approximately four times to create a similar radial potential barrier, while also reducing
the transverse coil size from R to 0.6 R. The survival fraction f (t) obtained for the octupole
field B = Bo0 + Bo4 cos 4φ and the axisymmetric potential U (r, z) = μBo0 + Mgz are shown
in figure 4. Although the axisymmetric potential U (r, z) = μBo0 + Mgz cannot actually be
realized in a multipole magnetic trap, simulating anti-atom dynamics in it helps to highlight
the role of angular perturbations in long-time anti-atom dynamics.

3.3.2. Comparison with analytical predictions and frequency map analysis. The majority
of anti-atoms trapped for more than 10 ms in the quadrupole trap configuration considered
above would appear to exhibit regular trajectories. This can be explained qualitatively using
the formalism outlined in section 2. After calculating Ir and Iz numerically, using equations (9)
and (11), the frequencies ωr, ωφ , and ωz are obtained by differentiating the unperturbed
Hamiltonian expressed as a function of the corresponding actions �I. Knowing these canonical
frequencies, we identify all resonances for anti-atoms with fixed energy E and plot them in
(Iz, Pφ ) space. Figure 2 shows such a plot for a vertically-oriented quadrupole trap (section 3.2)
and E = 390 mK, with resonances Qk,l,s ≡ k ωr + l ωz + s ωφ = 0 and |k| � 10, |l| � 12, and
|s| � 12. (Without limitation on k, l, and s, the entire plot is covered by a dense set of curves at
this resolution.) The triangular shape of the plot is due to the fact that H⊥(Ir, Pφ ) = E −H‖(Iz)

decreases as Iz increases.
Not all resonances shown in figure 2 influence the dynamics significantly. For example,

consider a trap with a perturbation possessing only one angular harmonic, i.e. δU (r, φ, z) =
V (r, z) cos nφ. For n = 0, corresponding to an axisymmetric perturbation, all resonances have
the form k ωr + l ωz = 0. For n = 1, the only resonances affecting anti-atom motion are those
RE

1 solving Qk,l,±1 = 0 (shown with dash-dotted lines in figure 2). The number of resonances
increase with a quadrupole field (n = 2). Indeed, every resonance Qk,l,±1 = 0 is also a
resonance for n = 2 since Q2k,2l,±2 = 2Qk,l,±1, i.e. RE

1 ⊆ RE
2 . Other resonances Qk,l,±2 = 0

for which either k or l is an odd number, including the resonance ωr = 2ωφ at Pφ = 0 (see
section 2.1), are shown in figure 2 with yellow dashed lines. For the octupole perturbation
with n = 4, the number of resonances increases even further since, again, RE

1 ⊆ RE
2 ⊆ RE

4 ,
i.e. the set of all resonances Qk,l,±4 = 0 also includes resonances Qk,l,±1 = 0 and Qk,l,±2 = 0.
This effect may be partially responsible for the presence of a larger fraction of anti-atoms with
stochastic trajectories in the octupole traps (figure 4).

The fraction of anti-atoms affected by a specific resonance depends on its width. Using
equations (19) and (21), the widths of resonances Qk,l,0 = 0 and Qh,0,−2h = 0 can be calculated
numerically for a vertically-oriented trap with parameters similar to those of ATRAP (figure 2).
The resonance Q1,0,−2 = 0 is then shown to affect a large fraction of trapped anti-atoms, while
Qk,l,0 = 0 resonances have much smaller widths. Therefore, since there is no resonance overlap
over a large phase space volume, most anti-atom trajectories are expected to be regular.

The predicted locations of resonances (along with their widths) and the associated
stochastic layers can be verified numerically using a variation of the frequency map analysis
(FMA) method [19]. The core idea behind this technique is to test system coordinates like
Ikeiψk for quasiperiodicity. Treating such a variable as a function of time, one can approximate
it as a sum of harmonics

∑N
k=1 Akei�kt with |Ak+1| � |Ak| and then compare the values of

Ak and �k on different non-intersecting time intervals. If the frequencies and amplitudes
change considerably along a single anti-atom trajectory, it can be regarded as a sign of
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(a) (b)

Figure 5. Frequency map analysis (FMA) diagram [19] showing D(P̄φ, Īz) = ln |1 − �B/�A| for
Pφ (t) in a vertical quadrupole trap. Primary frequencies �A and �B are calculated numerically over
two successive 4 s time intervals A and B. Blue and green colors correspond to regular quasiperiodic
trajectories. Values of P̄φ and Īz together with ψr = ψz = ψφ = 0 define the initial conditions for
the system trajectory with: (a) E = 390 mK and (b) E = 475 mK.

stochasticity. Figure 5 shows the FMA maps obtained by analyzing Pφ(t) for initial angles
ψφ = ψr = ψz = 0 and energies E = 390 mK and E = 475 mK. The initial conditions
corresponding to chaotic anti-atom motion are shown with yellow and red in figure 5. This
figure and other numerical results obtained for different initial angles suggest that nearly all
anti-atoms with energy E = 390 mK are characterized by quasiperiodic trajectories (shown
with blue) rather than chaotic motion. Higher energy anti-atoms with E = 475 mK, however,
are more likely to exhibit stochastic dynamics. Emergence of stochastic orbits for higher
energies can be attributed to the fact that many anti-atoms can now reach regions near the wall
(r = Rw) at z ≈ Z, where the angle-dependent perturbation of the trapping potential becomes
particularly strong. Note, however, that emergence of stochasticity does not necessarily imply
rapid anti-atom loss. In fact, the majority of anti-atoms with initial states within the bright area
in figure 5(b) were shown to stay in the system for at least 100 s.

Some of the main features of the FMA maps shown in figure 5 can be related to
our analytical predictions. Since agreement is better observed for weaker perturbations δU
(characteristic of traps with smaller radii), consider an artificial system with a trapping potential
U (r, φ, z) = U0 + (U2/4) cos 2φ, where U0 and U2 are calculated for a vertical quadrupole trap
discussed in section 3.2. Calculating locations and widths of resonance islands, all resonances
except for ωr = 2ωφ can be shown to affect only a small region of the system phase space.
On the other hand, the width of the resonance ωr = 2ωφ calculated using equation (21) is
sufficiently large to affect almost half of all 390 mK anti-atoms. Interestingly, the perturbation
harmonic δW1,0,2 corresponding to this resonance and considered as a function of Iz for Pφ = 0
passes through zero at some Iz = I∗. This means that the phase portrait of the resonance island
shifts in phase by π after Iz goes through I∗. As a result, both when Iz < I∗, ψφ = 0 or when
Iz > I∗, ψφ = π , the anti-atom is initialized over a saddle point and, thus, all such orbits are
not trapped within the resonance, but lie outside of the resonance island. On the other hand,
for Iz > I∗, ψφ = 0 or Iz < I∗, ψφ = π , the system state is initialized over a stable stationary
point, and the corresponding orbit turns out to be trapped for Pφ smaller than the maximum
resonance width.

These analytical predictions are in agreement with the FMA map shown in figure 6.
Indeed, the bright green round curve in figure 6 corresponds to the separatrix of the resonance
ωr = 2ωφ , which can also be visualized by plotting the average Pφ(t) for different anti-
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Figure 6. A FMA map similar to that in figure 5(a), obtained for E = 390 mK in a system
with a trapping potential U = U0 + (U2/4) cos 2φ, where U0 and U2 are calculated for the vertical
quadrupole trap (section 3.2). Color palette is altered to highlight the parabolic curve (white arrows)
containing strongly nonlinear trajectories. It corresponds to the boundary of the resonance island
over the stable stationary point (figure 7). The straight line at P̄φ = 0 corresponds to trajectories
near the saddle point.

Figure 7. Dependence of |〈P̄φ (t)〉|(Īz, P̄φ ) calculated for E = 390 mK in a system with a trapping
potential U = U0 + (U2/4) cos 2φ, where U0 and U2 are obtained for the vertical quadrupole
trap (section 3.2): (a) all anti-atoms are initialized with ψr = ψφ = ψz = 0, (b) anti-atoms are
initialized with ψφ = π and ψr = ψz = 0. The boundary (dotted line) of the resonance ωr = 2ωφ

at Pφ = 0 calculated using equation (21) contains two branches, for which the corresponding one-
dimensional phase portraits are shifted by π with respect to each other. For one of these branches
(bottom curve on figure (a)) the initial condition with ψr = ψφ = 0 initializes the system state
over the saddle point, hence 〈Pφ〉 is non-zero. For the other branch, this initial condition places the
system state over the stable stationary point, which makes 〈Pφ〉 = 0 within the maximum width of
the resonance island.

atom trajectories (figure 7). If the anti-atom orbit is trapped within this resonance, 〈Pφ〉 = 0,
while for anti-atoms outside of the resonance island, 〈Pφ〉 is finite. By crossing the separatrix,
one would therefore expect to see a jump in 〈Pφ〉. The analytical predictions for the resonance
width and for I∗, shown in figure 7 for ψφ = 0 and ψφ = π , would seem to agree with the
〈Pφ〉 jumping near the actual separatrix.

14



Class. Quantum Grav. 30 (2013) 205014 A I Zhmoginov et al

3.3.3. Radial barrier shutdown. In the previous section, based on the numerical simulation
of dynamics governed by the frozen Hamiltonian, we inferred that, for our numerical example,
a significant fraction of trapped anti-atoms with E � Umin have regular trajectories. This
makes the assumption of trajectory ergodicity unjustified. However, it is still possible that
the anti-atom gravitational mass can influence how anti-atoms escape as the radial potential
well lowers with the decrease of the quadrupole coil current Iq. Suppose that the shutdown of
the quadrupole coil starts at t = t0. If, for a fixed profile Iq(t), the fraction of trapped anti-
atoms f (t) = n(t)/n(t0) is different for different values of F , one can use an experimental
measurement of f (t) to infer bounds on the gravitational mass. In the following, we compare
simulations of f (t) for F = 1 and F = 200.

We next identify the multipole field with the field �Bq(�r, t) created by the quadrupole coils.
Introducing α(t) = Iq(t)/Iq(t0) so that �Bq(�r, t) = α(t) �Bq(�r, t0), the field strength can be
written as:

|�B| =
√

B2
z + B2

r + B2
φ = {

[Bbz + Bpz + αBqz(�r, t0)]
2

+ [Bpr + αBqr(�r, t0)]
2 + α2B2

qφ(�r, t0)
}1/2 =

√
B2

A + 2αG + α2B2
q(�r, t0), (22)

where B2
A = (Bbz + Bpz)

2 + B2
pr, G = BprBqr(�r, t0) + (Bbz + Bpz)Bqz(�r, t0), and the subscripts

r, φ denote the radial and azimuthal components of vectors, respectively.
Equation (22) was implemented numerically by tabulating zeroth-order and second-order

azimuthal harmonics of B2
A, G and B2

q(�r, t0) independently. The simulated anti-hydrogen
ensemble contained 64 000 anti-atoms with an energy distribution N (E ) dE scaling like√

E dE3 [2, 20]. All anti-atoms were initialized with energy below 550 mK, because any anti-
atom with higher energy leaves the device within 10 ms. We compared the loss of anti-atoms
due to the quadrupole coil shutdown for F = 1 and F = 200. For the first t0 = 1000 s, the
quadrupole coil is energized α(t < t0) = 1. Then, the quadrupole coil is turned off with a
characteristic time scale on the order of 1 s. A choice of α(t) = exp[−2(t−t0)2/(t−t0+0.8 s)]
for t � t0, similar to the reconstructed radial trapping potential shown in figure 3(b) of [5].

The time-dependence of the fraction of anti-atoms remaining trapped after the initiation
of shutdown is shown in figure 8. According to figure 8, the dependencies f (t) calculated for
F = 1 and F = 200 are virtually identical. Introducing the moment of time tR ≈ 1000.16 s
when the radial potential barrier at z = 0 drops down to Umin, one observes that, while
approximately 3% of anti-atoms escape the device prior to tR in a system with F = 1, about
2.5% of anti-atoms escape over the same time interval when F = 200. Note that if the anti-
atom motion were ergodic, no anti-atom de-trapping would be observed until t = tR for the
case where F = 200.

Of course, the fact that in ATRAP, about 10% of all annihilation events were detected
before t = tR [5] could be attributed to the fact that the actual anti-atom distribution
function might differ significantly from

√
E dE. Additional simulations performed with a

flat distribution function, containing only anti-atoms with energies in a range 350 mK � E �
550 mK, were shown to be in close agreement with results obtained for a N (E ) dE ∝ √

E dE
distribution and, in this case, the fraction of anti-atoms escaping before t = tR reached 7%.
A small deviation of 0.5% between the graphs of f (t) for t < tR shown in figure 8 could, in
principle, be detected in an experiment. Note, however, that we infer that only approximately
four anti-hydrogen annihilations (with five expected cosmic events) were observed in total in
[5] in the relevant time region between t = t0 = 1000 s and t = tR = 1000.16 s. This count
rate is at least two orders of magnitude lower than that necessary to resolve the differences
between the curves shown in figure 8.

3 Unfortunately, we do not have enough information to infer an actual anti-atom distribution in ATRAP.
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Figure 8. Survival fraction f (t) = n(t)/n(tshut) in the quadrupole trap under the assumption that
F = 1 (solid) or F = 200 (dashed). Anti-atoms are initialized with a

√
E dE distribution and

E � 550 mK (black) and with a flat distribution and 350 mK � E � 550 mK (gray). The vertical
line corresponds to a time tR = 1000.16 s at which the radial trapping potential drops down to
Umin = 350 mK. The inset shows a zoomed in region for t < tR.

We infer from these simulations that one cannot establish a limit of F < 200 using the
technique described above with a vertical quadrupole trap. Note that the two distributions
studied here are very different, but lead to the same conclusion.

In the following section we turn our attention an improved technique.

3.3.4. Axial barrier shutdown. A natural alternate approach for measuring the anti-hydrogen
gravitational mass involves lowering the axial trapping barrier in a vertical trap. Recall that
if M > 0, the gravitational potential Mgz lowers the trapping potential at the bottom of the
trap and raises it at the top, relative to the trap center; for M < 0, the trapping potential is
lowered at the top and raised at the bottom. Assuming that currents in both coils are very
nearly equal at each moment of time, and that the magnetic field they produce is decreasing
in magnitude sufficiently slowly, nearly all anti-atoms with M > 0 will be expected to exit
at the bottom of the trap, where the trapping potential is slightly lower (figure 1). For M
negative, anti-hydrogen would instead preferentially exit the trap at the top. Observing the
vertical location of anti-hydrogen annihilations during slow shutdown of mirror coils may,
therefore, be a useful experimental technique for quickly assessing the sign of M. Preliminary
estimates of the required shutdown time and a numerical simulation of such an experiment are
discussed below.

The characteristic adiabatic time-scale τ∗, on which the trapping potential should be
lowered in order to determine the sign of M can be estimated by analyzing the axial motion
under the Hamiltonian H‖(pz, z, t). Suppose that M > 0 and consider an anti-atom which is
about to cross the inner separatrix S1 passing through the saddle point of the lower potential
barrier (figure 1). Let T (H‖, t) be the period of the anti-hydrogen trajectory calculated for
a frozen potential profile U (z), and let T be the smallest period of all orbits between two
separatrices. If T is sufficiently large, the anti-atom may cross another separatrix S2 passing
through the saddle point of the upper potential barrier, after the time τ = (2MgL/U )τ , where
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Figure 9. Dependence of 〈z〉/L on τ for 100 mK anti-hydrogen atoms trapped in a vertical octupole
trap with parameters similar to those of ALPHA (section 3.2) with: (a) artificial separable potential
Ū (r, z) = U (r, 0, 0) + U (0, 0, z) − U (0, 0, 0) (green solid) and (b) realistic trapping potential
U (r, φ, z) (blue solid). Two fitted exponential functions exp(−2.6τ − 0.2) − 1 (green dotted) and
0.5(exp(−4.1τ ) − 1) (blue dotted) are shown for reference.

U is the trap depth and τ is the field shutdown time. As a result, the probability for such an
anti-atom to leave the device at the top (pz > 0) will be approximately equal to the probability
of leaving at the bottom (pz < 0). On the other hand, if T � τ , nearly all anti-hydrogen
crossing S1 will leave the device at the bottom before reaching S2. The field shutdown is then
adiabatic if it occurs on a time-scale much larger than τ∗ defined by:

2MgL

U
τ∗ = T . (23)

The value of T can be estimated by recalling that T (H‖) goes to infinity (logarithmically) near
both separatrices, and the minimum of T is therefore comparable to

T ∼ lz

√
2m

U

[
ln

(
4U

MgL

)
+ 2L

lz

]
, (24)

where lz is the characteristic scale length of the axial confining potential. Assuming that
M = m, this estimate suggests that for 100 mK anti-hydrogen with a Gaussian distribution
trapped in a device similar to ALPHA, τ∗ is expected to be ∼ 1 s. To verify this conjecture,
numerical simulations of anti-hydrogen escaping from a trap with a separable potential
Ū (r, z) = Ur(r) + Uz(z), where Ur(r) = U (r, 0, 0), Uz(z) = U (0, 0, z) − U (0, 0, 0),
and U (r, φ, z) = μB is the confining potential of an ALPHA-like apparatus described
in section 3.2, were performed. Lowering the current in the mirror coils according to
Im(t) = Im0 e−(t−t0 )/τ , we calculated the z coordinates of all simulated annihilation events
and plotted their average 〈z〉 as a function of τ . As expected, this average annihilation position
〈z〉(τ ), shown in figure 9, converges to the bottom of the trap −L as τ goes to infinity. The
characteristic time-scale of this dependence is on the order of a second, in agreement with the
prediction for τ∗.

If implemented, this experimental technique allows one to distinguish between F > α(τ )

andF < −α(τ ) with α(τ ) → 0 as τ → ∞. Choosing a sufficiently large τ , it might even allow
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one to distinguish F � 1 from F � −1 for even 300 mK anti-hydrogen atoms. Unfortunately,
however, this proposed technique would be very sensitive to possible deviations of the actual
trapping potential U (r, φ, z) from its separable approximation Ū (r, z). One consequence of the
non-separability of U (r, φ, z) is the emergence of stochastic layers near the separatrices. If the
layers overlap, anti-atom dynamics within the region confined by S1 and S2 will be stochastic,
and the approximate expression derived for T will no longer be valid. On the other hand, a
small non-separable field component δU = U − Ū may perturb low-energy anti-hydrogen
trajectories as the mirror coils are being shut down. Indeed, if the oscillations of Iz due to
the perturbation δU are sufficiently strong and exceed the distance between the separatrices,
anti-atoms will cross both of them numerous times. As a result, anti-atoms with M > 0 will
retain a finite probability of leaving the device at the top, even if the field shutdown is infinitely
slow.

This effect can be observed by simulating 100 mK anti-hydrogen escape from a device
with a realistic trapping potential U (r, φ, z). Now 〈z〉(τ ) does not converge to −L as τ → ∞,
but instead becomes saturated at 〈z〉 ≈ −7.5 cm (figure 9). Therefore, increasing the shutdown
time τ (beyond about 0.5 s in our case) does not necessarily lead to a substantial decrease of
α(τ ) nor to improvement of the anti-hydrogen gravitational mass measurement.

3.3.5. Accuracy of the gravitational mass measurement. As discussed in the previous
section, 〈z〉 of escaping particles measured in a vertical trap with de-energized mirror coils
can be very sensitive to the gravitational mass M of the cold anti-hydrogen. This effect could,
in principle, be used to determine the value of M, or simply check whether M is greater or
smaller than zero. Here, we study the accuracy of such a hypothetical test by comparing 〈z〉
for F = −1 and F = 1, assuming that there are only 500 annihilation observations. To
accomplish this, we follow the procedure discussed in [4], namely we calculate the reverse
cumulative averages 〈z〉∗k (t) for 640 sets sk, each containing 500 simulated annihilation events.
This reverse cumulative average is defined as the average z of events occurring after the time
t, i.e.

〈z〉∗k (t) ≡
( ∑

i∈sk, ti<t

zi

)( ∑
i∈sk, ti<t

1

)−1

. (25)

Likely statistical fluctuations of {〈z〉∗k} can then be visualized [4] by plotting a confidence region
[z1(t), z2(t)], chosen in such a way that the intervals (−∞, z1) and (z2,∞) each contain only
5% of the values of {〈z〉∗k}.

The simulations were performed for a vertical trap with parameters similar to those
of the ALPHA apparatus. The confidence regions for F = ±1, but with different values
of the anti-hydrogen temperature and shutdown times, are shown in figures 10 and 11.
In these simulations, the time profile of the current in the mirror coils was chosen to be
Im(t) = Im0 e−t/τ with τ = 0.05 s, 0.1 s, and 0.3 s (we have chosen t0 = 0 for simplicity). We
find that a measurement of 〈z〉 for τ = 50 ms and a

√
E exp(−E/kT ) dE particle distribution,

with T � 600 mK, can be used to distinguish between F = −1 and F = +1 hypotheses
with a 95% confidence. In other words, a measurement 〈z〉 > 0 (< 0) is inconsistent with
F = +1 (F = −1) hypothesis since this average lies outside of the 95% 〈z〉-confidence
region simulated for F = +1 (F = −1). Note that calculating 〈z〉 of late-time events
can further improve the accuracy of the method (figure 10). Simulations performed for a
horizontal ALPHA trap suggest [4] that a similar test on the sign of M can be accomplished
only for cold plasmas and a large octupole coil shutdown time. Fixing the anti-hydrogen
temperature at 30 mK, we see that two 95% confidence regions for F = ±1 intersect when
τ < 0.2 s.
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Figure 10. Reverse cumulative averages 〈z〉∗� of all 3.2×105 annihilation events and corresponding
confidence regions (blue for T = 300 mK, red for T = 100 mK and green for T = 30 mK)
obtained numerically for anti-atoms with F = 1 (bottom) and F = −1 (top) in a vertical trap
with τ = 300 ms. The bands indicate the 90% confidence region for 500 anti-hydrogen atoms. The
assumed particle distribution is

√
E exp(−E/kT ).

Figure 11. Reverse cumulative averages 〈z〉∗� of all 3.2×105 annihilation events and corresponding
confidence regions (blue for τ = 50 ms, red for τ = 100 ms and green for τ = 300 ms) obtained
numerically for 100 mK anti-atoms with F = 1 (bottom) and F = −1 (top) in a vertical trap.
The bands indicate the 90% confidence region for 500 anti-hydrogen atoms. The assumed particle
distribution is

√
E exp(−E/kT ).

A more accurate gravitational mass measurement using axial barrier shutdown in a vertical
trap compared to a similar measurement in a horizontal trap comes at a price of higher
sensitivity to systematic field uncertainties. Distinguishing between F = −1 and F = +1
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with a 95% confidence requires that the external field perturbations near magnetic mirrors are
much smaller than 10 G. Additional simulations of a vertical trap similar to ALPHA have not
shown any systematic effects that would require magnetic coil alignment or precision beyond
what seems feasible. The limit on the shutdown time found to be approximately equal to 50 ms.

4. Conclusions

Measuring the ratio of the gravitational to inertial mass in neutral anti-hydrogen is possible in
vertical and horizontal traps, but will require detailed simulations of the nonlinear dynamics
of trapped anti-atoms, as these dynamics affect the nature of any signal of the gravitational
interaction, and limit the accuracy with which it might be extracted. Our study of a vertical
quadrupole trap based on the ATRAP experiment shows that the claimed experimental
sensitivity is not realized with an experimental methodology inferred from [5]. Surprisingly,
insufficient stochasticity can limit schemes to measure the gravitational mass of anti-matter.
In particular, because of a lack of ergodicity, radial shutdown in a vertical trap does not appear
to offer much sensitivity to F = M/m. The coupling of axial and transverse motions and the
related notion of stochasticity of typical trajectories in phase space plays especially important
roles in other measurement techniques as well. In some cases, Arnold diffusion [17, 18, 21]
and other consequences of stochasticity can limit the precision with which gravitational
interactions can be inferred. The simplicity of the quasi-one-dimensional dynamics in a
vertical trap with varying axial potential makes this measurement technique more feasible
than a similar measurement in a horizontal trap. Also, particle detectors need only to be placed
on top and bottom of the trap, and the studies here have not found systematic effects that require
field alignment or precision beyond what seems feasible. This technique should be able to
distinguish upward from downward acceleration, F = ±1 with existing magnet technology
and careful analysis of systematics.
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