Home


Welcome

ALPHA is an international collaboration based at CERN, and which is working with trapped antihydrogen atoms, the antimatter counterpart of the simplest atom, hydrogen. By precise comparisons of hydrogen and antihydrogen, the experiment hopes to study fundamental symmetries between matter and antimatter.

News

Our new octupole is being made at Brookhaven National Laboratory - here's a video that they've sent us of the work in progress.

The superconducting wire is laid down by a machine-controlled head, and bonded in place as it goes. The new octupole will be welded into the ALPHA-2 cryostat and comissioned at CERN this summer. Thanks to the BNL Superconductng Magnet Division for making this video for us.

CERN People

22 Feb 2012

ALPHA is featured in a new documentary following life at CERN. See the first video on youtube or check out the film's page for more articles and videos.

The Carlsberg Foundation of Denmark has awarded a large research grant to ALPHA Spokesperson Professor Jeffrey Hangst of Aarhus University.  The award, of 3.3 million Danish kroner, will be used to purchase a new superconducting solenoid magnet for our next generation antihydrogen trapping device, known as ALPHA-2.  In 2012, the ALPHA-2 machine will replace the current ALPHA device, which is the first (and so far the only) machine to magnetically trap atoms of antihydrogen.  The new apparatus will allow ALPHA researchers to begin precision laser and microwave spectroscopy of trapped antimatter atoms.  The goal is to test whether atoms of matter and atoms of antimatter obey the same laws of physics.  The Carlsberg Foundation was created by Carlsberg founder J.C. Jacobsen in 1876 and has a long history of supporting scientific research in Denmark.  We in ALPHA would like to thank the Carslberg Foundation for their generous support.

The American Physical Society Division of Plasma Physics awarded its John Dawson award for excellence in plasma physics research to several ALPHA members. Will Bertsche, Paul Bowe, Mike Charlton, Joel Fajans, Makoto Fujiwara, Jeffrey Hangst, Niels Madsen, Francis Robicheaux, Daniel Silveira, Dirk Van der Werf and Jonathan Wurtele were cited "For the introduction and use of innovative plasma techniques which produced the first demonstration of the trapping of antihydrogen."

A schematic of the ELENA ring, to be built at the CERN AD.

The first construction meeting for the Extra-Low ENergy Antiproton (ELENA) Ring kicks off at CERN today. ELENA, approved by the CERN research board last July, is an additional ring in the Antiproton Decelerator (AD) building, designed to slow the 3.5 MeV beam from the AD to 100keV before delivering the beam to the experiments. What this means for experiments like ALPHA is that we can use much thinner matter foils to slow the antiproton beam down before capturing them in the trap, which in turn can mean a hundredfold increase in capture efficiency.

The meeting involves presentations from the experiments on past achievements, and future goals, from the CERN departments on the technical challenges and plans to meet them, and from external institues, committing financial and technical add to the project.

Read more at the CERN press release.

Pages